Downloads
Download
Additional Files
Download - Supplementary Materials
This work is licensed under a Creative Commons Attribution 4.0 International License.
Article
Controlled Polymerization of Aniline against Templating Oxide Nanostructures
1 Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA 19122, USA
2 U.S. Army DEVCOM Chemical Biological Center, Research & Technology Directorate, Aberdeen Proving Ground, MD 21010, USA
* Correspondence: ygsun@temple.edu
Received: 6 November 2024; Revised: 30 November 2024; Accepted: 3 December 2024; Published: 4 December 2024
Abstract: Conducting polyaniline (PANI) nanotubes with strong broadband optical absorption have been synthesized using single-crystalline MnO2 nanotubes as a solid-state oxidant that can oxidize aniline to induce polymerization in acidic solutions. The smooth surfaces and high crystalline integrity of the MnO2 nanotubes provide the appropriate reactive solid/liquid interface and templating effect to enable the transformation of the MnO2 nanotubes into PANI nanotubes. Such templated chemical transformation can be extended to silica-coated MnO2 nanotubes, allowing the synthesis of silica-coated PANI nanotubes, which are challenging to be synthesized through direct coating silica on PANI nanotubes due to the low wettability between PANI and silica. The versatile chemistry of the outer silica shells opens the possibility of modifying the as-synthesized PANI nanotubes, which usually inconveniently graft other interesting motifs.
Keywords:
templated redox reaction synthesis conducting polymer nanotubes inorganic-polymer core-shell nanotubes broadband optical absorption composite nanomaterialsReferences
- McQuade, D.T.; Pullen, A.E.; Swager, T.M. Conjugated Polymer-Based Chemical Sensors. Chem. Rev. 2000, 100, 2537–2574. https://doi.org/10.1021/cr9801014. DOI: https://doi.org/10.1021/cr9801014
- Yang, D.; Wang, J.; Cao, Y.; Tong, X.; Hua, T.; Qin, R.; Shao, Y. Polyaniline-Based Biological and Chemical Sensors: Sensing Mechanism, Configuration Design, and Perspective. ACS Appl. Electron. Mater. 2023, 5, 593–611. https://doi.org/10.1021/acsaelm.2c01405. DOI: https://doi.org/10.1021/acsaelm.2c01405
- Novák, P.; Müller, K.; Santhanam, K.S.V.; Haas, O. Electrochemically Active Polymers for Rechargeable Batteries. Chem. Rev. 1997, 97, 207–282. https://doi.org/10.1021/cr941181o. DOI: https://doi.org/10.1021/cr941181o
- Wang, K.; Wu, H.; Meng, Y.; Wei, Z. Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small 2014, 10, 14–31. https://doi.org/10.1002/smll.201301991. DOI: https://doi.org/10.1002/smll.201301991
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020, 63, 1–22. https://doi.org/10.1021/acs.jmedchem.9b00803. DOI: https://doi.org/10.1021/acs.jmedchem.9b00803
- Tran, H.D.; D’Arcy, J.M.; Wang, Y.; Beltramo, P.J.; Strong, V.A.; Kaner, R.B. The Oxidation of Aniline to Produce “Polyaniline”: A Process Yielding Many Different Nanoscale Structures. J. Mater. Chem. 2011, 21, 3534–3550. https://doi.org/10.1039/C0JM02699A. DOI: https://doi.org/10.1039/C0JM02699A
- Sapurina, I.; Stejskal, J. The Mechanism of the Oxidative Polymerization of Aniline and the Formation of Supramolecular Polyaniline Structures. Polym. Int. 2008, 57, 1295–1325. https://doi.org/10.1002/pi.2476. DOI: https://doi.org/10.1002/pi.2476
- Pavitt, A.S.; Bylaska, E.J.; Tratnyek, P.G. Oxidation Potentials of Phenols and Anilines: Correlation Analysis of Electrochemical and Theoretical Values. Environ. Sci. Process. Impacts 2017, 19, 339–349. https://doi.org/10.1039/C6EM00694A. DOI: https://doi.org/10.1039/C6EM00694A
- Zhang, X.; Manohar, S.K. Polyaniline Nanofibers: Chemical Synthesis Using Surfactants. Chem. Commun. 2004, 20, 2360. https://doi.org/10.1039/b409309g. DOI: https://doi.org/10.1039/b409309g
- Kim, B.-J.; Oh, S.-G.; Han, M.-G.; Im, S.-S. Preparation of Polyaniline Nanoparticles in Micellar Solutions as Polymerization Medium. Langmuir 2000, 16, 5841–5845. https://doi.org/10.1021/la9915320. DOI: https://doi.org/10.1021/la9915320
- Wei, Z.; Zhang, Z.; Wan, M. Formation Mechanism of Self-Assembled Polyaniline Micro/Nanotubes. Langmuir 2002, 18, 917–921. https://doi.org/10.1021/la0155799. DOI: https://doi.org/10.1021/la0155799
- Wu, C.-G.; Bein, T. Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science 1994, 264, 1757–1759. https://doi.org/10.1126/science.264.5166.1757. DOI: https://doi.org/10.1126/science.264.5166.1757
- Pan, L.J.; Pu, L.; Shi, Y.; Song, S.Y.; Xu, Z.; Zhang, R.; Zheng, Y.D. Synthesis of Polyaniline Nanotubes with a Reactive Template of Manganese Oxide. Adv. Mater. 2007, 19, 461–464. https://doi.org/10.1002/adma.200602073. DOI: https://doi.org/10.1002/adma.200602073
- Han, J.; Wang, M.; Cao, S.; Fang, P.; Lu, S.; Chen, R.; Guo, R. Reactive Template Strategy for Fabrication of MnO2/Polyaniline Coaxial Nanocables and Their Catalytic Application in the Oxidative Decolorization of Rhodamine B. J. Mater. Chem. A 2013, 1, 13197–13202. https://doi.org/10.1039/C3TA12545A. DOI: https://doi.org/10.1039/c3ta12545a
- Ren, L.; Zhang, G.; Wang, J.; Kang, L.; Lei, Z.; Liu, Z.; Liu, Z.; Hao, Z.; Liu, Z. Adsorption–Template Preparation of Polyanilines with Different Morphologies and Their Capacitance. Electrochim. Acta 2014, 145, 99–108. https://doi.org/10.1016/j.electacta.2014.08.088. DOI: https://doi.org/10.1016/j.electacta.2014.08.088
- Tian, Y.; Li, H.; Liu, Y.; Cui, G.; Sun, Z.; Yan, S. Morphology-Dependent Enhancement of Template-Guided Tunable Polyaniline Nanostructures for the Removal of Cr(VI). RSC Adv. 2016, 6, 10478–10486. https://doi.org/10.1039/C5RA25630E. DOI: https://doi.org/10.1039/C5RA25630E
- Han, J.; Li, L.; Fang, P.; Guo, R. Ultrathin MnO2 Nanorods on Conducting Polymer Nanofibers as a New Class of Hierarchical Nanostructures for High-Performance Supercapacitors. J. Phys. Chem. C 2012, 116, 15900–15907. https://doi.org/10.1021/jp303324x. DOI: https://doi.org/10.1021/jp303324x
- Feng, X.; Zhang, Y.; Yan, Z.; Chen, N.; Ma, Y.; Liu, X.; Yang, X.; Hou, W. Self-Degradable Template Synthesis of Polyaniline Nanotubes and Their High Performance in the Detection of Dopamine. J. Mater. Chem. A 2013, 1, 9775–9780. https://doi.org/10.1039/C3TA11856H. DOI: https://doi.org/10.1039/c3ta11856h
- Fei, J.; Cui, Y.; Yan, X.; Yang, Y.; Wang, K.; Li, J. Controlled Fabrication of Polyaniline Spherical and Cubic Shells with Hierarchical Nanostructures. ACS Nano 2009, 3, 3714–3718. https://doi.org/10.1021/nn900921v. DOI: https://doi.org/10.1021/nn900921v
- Li, X.; Liu, X.; Qiao, X.; Xing, S. Confining the Polymerization of Aniline to Generate Yolk–Shell polyaniline@SiO2 Nanostructures. RSC Adv. 2015, 5, 79172–79177. https://doi.org/10.1039/C5RA15065E. DOI: https://doi.org/10.1039/C5RA15065E
- Truong, T.T.; Liu, Y.; Ren, Y.; Trahey, L.; Sun, Y. Morphological and Crystalline Evolution of Nanostructured MnO2 and Its Application in Lithium–Air Batteries. ACS Nano 2012, 6, 8067–8077. https://doi.org/10.1021/nn302654p. DOI: https://doi.org/10.1021/nn302654p
- Xiao, W.; Wang, D.; Lou, X.W. Shape-Controlled Synthesis of MnO2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction. J. Phys. Chem. C 2010, 114, 1694–1700. https://doi.org/10.1021/jp909386d. DOI: https://doi.org/10.1021/jp909386d
- Sun, Y.; Xia, Y. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. J. Am. Chem. Soc. 2004, 126, 3892–3901. https://doi.org/10.1021/ja039734c. DOI: https://doi.org/10.1021/ja039734c
- Furukawa, Y.; Ueda, F.; Hyodo, Y.; Harada, I.; Nakajima, T.; Kawagoe, T. Vibrational Spectra and Structure of Polyaniline. Macromolecules 1988, 21, 1297–1305. https://doi.org/10.1021/ma00183a020. DOI: https://doi.org/10.1021/ma00183a020
- Trchová, M.; Stejskal, J. Polyaniline: The Infrared Spectroscopy of Conducting Polymer Nanotubes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1803–1817. https://doi.org/10.1351/PAC-REP-10-02-01. DOI: https://doi.org/10.1351/PAC-REP-10-02-01
- Boyer, M.-I.; Quillard, S.; Rebourt, E.; Louarn, G.; Buisson, J.P.; Monkman, A.; Lefrant, S. Vibrational Analysis of Polyaniline: A Model Compound Approach. J. Phys. Chem. B 1998, 102, 7382–7392. https://doi.org/10.1021/jp972652o. DOI: https://doi.org/10.1021/jp972652o
- Boyer, M.I.; Quillard, S.; Louarn, G.; Froyer, G.; Lefrant, S. Vibrational Study of the FeCl3-Doped Dimer of Polyaniline; A Good Model Compound of Emeraldine Salt. J. Phys. Chem. B 2000, 104, 8952–8961. https://doi.org/10.1021/jp000946v. DOI: https://doi.org/10.1021/jp000946v
- Huang, W.S.; MacDiarmid, A.G. Optical Properties of Polyaniline. Polymer 1993, 34, 1833–1845. https://doi.org/10.1016/0032-3861(93)90424-9. DOI: https://doi.org/10.1016/0032-3861(93)90424-9
- Stafström, S.; Brédas, J.L.; Epstein, A.J.; Woo, H.S.; Tanner, D.B.; Huang, W.S.; MacDiarmid, A.G. Polaron Lattice in Highly Conducting Polyaniline: Theoretical and Optical Studies. Phys. Rev. Lett. 1987, 59, 1464–1467. https://doi.org/10.1103/PhysRevLett.59.1464. DOI: https://doi.org/10.1103/PhysRevLett.59.1464
- Neoh, K.G.; Kang, E.T.; Tan, K.L. Evolution of Polyaniline Structure during Synthesis. Polymer 1993, 34, 3921–3928. https://doi.org/10.1016/0032-3861(93)90521-B. DOI: https://doi.org/10.1016/0032-3861(93)90521-B
- Canales, M.; Torras, J.; Fabregat, G.; Meneguzzi, A.; Alemán, C. Polyaniline Emeraldine Salt in the Amorphous Solid State: Polaron versus Bipolaron. J. Phys. Chem. B 2014, 118, 11552–11562. https://doi.org/10.1021/jp5067583. DOI: https://doi.org/10.1021/jp5067583
- Shi, X.; Cao, M.; Fang, X. β-MnO2/SiO2 Core–Shell Nanorods: Synthesis and Dielectric Properties. J. Nanosci. Nanotechnol. 2011, 11, 6953–6958. https://doi.org/10.1166/jnn.2011.4252. DOI: https://doi.org/10.1166/jnn.2011.4252