Downloads

Yu, S., & Yang, H. On the Surface Compositions of Molybdenum Carbide Nanoparticles for Electrocatalytic Applications. Materials and Interfaces. 2024, 1(1), 3–12. doi: https://doi.org/10.53941/mi.2024.100006

Perspective

On the Surface Compositions of Molybdenum Carbide Nanoparticles for Electrocatalytic Applications

Siying Yu  and Hong Yang *,

Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews, Urbana, IL 61801, USA

* Correspondence: hy66@illinois.edu

Received: 28 November 2024; Accepted: 2 December 2024; Published: 6 December 2024

 

Abstract: Molybdenum carbide has attracted much research attention for its precious metal-like catalytic properties, especially in hydrogen-involved reactions. It possesses rich crystal and surface structures leading to different activity and product selectivity. With advances in nanoengineering and new understanding of their surfaces and interfaces, one can control the transition between different phases and surface structures for molybdenum carbide nanoparticles. In this context, it is essential to understand their surface compositions and structures under operating conditions in addition to their intrinsic ones under ambient conditions without external cues. The necessity of surface study also comes from the mild oxidation brought by passivation in carbide nanoparticles. made using the bottom-up synthesis or solid-gas phase temperature-programmed reduction. In this perspective, we first introduce the relevant crystal structures of molybdenum carbides and highlight the features of the three types of chemical bonding within. We then briefly review the studies of thermodynamically favored surface components and nanostructures for partially oxidized molybdenum carbide nanoparticles based on both experimental and theoretical data. An electrochemical oxidation method is used to illustrate the feasibility in controlling and understanding the surface oxidation. Finally, structure-property relationship is discussed with several recent examples, focusing on the effect of phase dependency on the adsorption energy of reaction intermediates.

Keywords:

molybdenum carbide surface composition oxycarbide electrocatalysis hydrogen evolution reaction density functional theory

References

  1. Huang, L.; Zheng, X.; Gao, G.; Zhang, H.; Rong, K.; Chen, J.; Liu, Y.; Zhu, X.; Wu, W.; Wang, Y.; et al. Interfacial electron engineering of palladium and molybdenum carbide for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 6933–6941. DOI: https://doi.org/10.1021/jacs.1c00656
  2. Ge, R.; Huo, J.; Sun, M.; Zhu, M.; Li, Y.; Chou, S.; Li, W. Surface and interface engineering: Molybdenum carbide–based nanomaterials for electrochemical energy conversion. Small 2021, 17, 1903380. DOI: https://doi.org/10.1002/smll.201903380
  3. Wu, J.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857. DOI: https://doi.org/10.1021/ar300359w
  4. Yu, S.; Yang, H. Design principles for the synthesis of platinum–cobalt intermetallic nanoparticles for electrocatalytic applications. Chem. Comm. 2023, 59, 4852–4871. DOI: https://doi.org/10.1039/D3CC00590A
  5. Tong, Y.; Zhang, Z.; Hou, Y.; Yan, L.; Chen, X.; Zhang, H.; Wang, X.; Li, Y. Recent progress of molybdenum carbide based electrocatalysts for electrocatalytic hydrogen evolution reaction. Nanoscale 2023, 15, 14717–14736. DOI: https://doi.org/10.1039/D3NR02511J
  6. Zhang, X.; Shi, C.; Chen, B.; Kuhn, A.N.; Ma, D.; Yang, H. Progress in hydrogen production over transition metal carbide catalysts: challenges and opportunities. Curr. Opin. Chem. Eng. 2018, 20, 68–77. DOI: https://doi.org/10.1016/j.coche.2018.02.010
  7. Liu, S.; Lin, Z.; Wan, R.; Liu, Y.; Liu, Z.; Zhang, S.; Zhang, X.; Tang, Z.; Lu, X.; Tian, Y. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. J. Mater. Chem. A 2021, 9, 21259–21269. DOI: https://doi.org/10.1039/D1TA05648D
  8. Zhang, B.; Zhou, J.; Elliott, S.R.; Sun, Z. Two-dimensional molybdenum carbides: Active electrocatalysts for the nitrogen reduction reaction. J. Mater. Chem. A 2020, 8, 23947–23954. DOI: https://doi.org/10.1039/D0TA07039D
  9. Li, Z.; Attanayake, N.H.; Blackburn, J.L.; Miller, E.M. Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy Environ. Sci. 2021, 14, 6242–6286. DOI: https://doi.org/10.1039/D1EE03211A
  10. Wan, J.; Liu, Q.; Wang, T.; Yuan, H.; Zhang, P.; Gu, X. Theoretical investigation of platinum-like catalysts of molybdenum carbides for hydrogen evolution reaction. Solid State Commun. 2018, 284–286, 25–30. DOI: https://doi.org/10.1016/j.ssc.2018.08.009
  11. Yu, G.-Q.; Huang, B.-Y.; Chen, X.; Wang, D.; Zheng, F.; Li, X.-B. Uncovering the surface and phase effect of molybdenum carbides on hydrogen evolution: A first-principles study. J. Phys. Chem. C 2019, 123, 21878–21887. DOI: https://doi.org/10.1021/acs.jpcc.9b04461
  12. Wang, W.; Geng, W.; Zhang, L.; Zhao, Z.; Zhang, Z.; Ma, T.; Cheng, C.; Liu, X.; Zhang, Y.; Li, S. Molybdenum oxycarbide supported Rh-clusters with modulated interstitial C–O microenvironments for promoting hydrogen evolution. Small 2023, 19, 2206808. DOI: https://doi.org/10.1002/smll.202206808
  13. Deng, B.; Wang, Z.; Chen, W.; Li, J.T.; Luong, D.X.; Carter, R.A.; Gao, G.; Yakobson, B.I.; Zhao, Y.; Tour, J.M. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Comm. 2022, 13, 262. DOI: https://doi.org/10.1038/s41467-021-27878-1
  14. Shrestha, A.; Gao, X.; Hicks, J.C.; Paolucci, C. Nanoparticle size effects on phase stability for molybdenum and tungsten carbides. Chem. Mater. 2021, 33, 4606–4620. DOI: https://doi.org/10.1021/acs.chemmater.1c01120
  15. Hu, Z.; Zhang, L.; Huang, J.; Feng, Z.; Xiong, Q.; Ye, Z.; Chen, Z.; Li, X.; Yu, Z. Self-supported nickel-doped molybdenum carbide nanoflower clusters on carbon fiber paper for an efficient hydrogen evolution reaction. Nanoscale 2021, 13, 8264–8274. DOI: https://doi.org/10.1039/D1NR00169H
  16. Kuhn, A.N.; Park, R.C.; Yu, S.; Gao, D.; Zhang, C.; Zhang, Y.; Yang, H. Valorization of carbon dioxide into C1 product via reverse water gas shift reaction using oxide-supported molybdenum carbides. Carbon Future 2024, 1, 9200011. DOI: https://doi.org/10.26599/CF.2024.9200011
  17. Li, J.-S.; Wang, Y.; Liu, C.-H.; Li, S.-L.; Wang, Y.-G.; Dong, L.-Z.; Dai, Z.-H.; Li, Y.-F.; Lan, Y.-Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204. DOI: https://doi.org/10.1038/ncomms11204
  18. Zhao, T.; Lan, D.; Jia, Z.; Gao, Z.; Wu, G. Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res. 2024, 17, 9845–9856. DOI: https://doi.org/10.1007/s12274-024-6938-1
  19. Baek, D.S.; Lee, J.; Kim, J.; Joo, S.H. Metastable phase-controlled synthesis of mesoporous molybdenum carbides for efficient alkaline hydrogen evolution. ACS Catal. 2022, 12, 7415–7426. DOI: https://doi.org/10.1021/acscatal.2c01772
  20. Wang, H.; Diao, Y.; Gao, Z.; Smith, K.J.; Guo, X.; Ma, D.; Shi, C. H2 production from methane reforming over molybdenum carbide catalysts: From surface properties and reaction mechanism to catalyst development. ACS Catal. 2022, 12, 15501–15528. DOI: https://doi.org/10.1021/acscatal.2c04619
  21. Upadhyay, S.; Pandey, O.P. Synthesis and electrochemical applications of molybdenum carbide: Recent progress and perspectives. J. Electrochem. Soc. 2022, 169, 016511. DOI: https://doi.org/10.1149/1945-7111/ac4a52
  22. Guardia-Valenzuela, J.; Bertarelli, A.; Carra, F.; Mariani, N.; Bizzaro, S.; Arenal, R. Development and properties of high thermal conductivity molybdenum carbide–graphite composites. Carbon 2018, 135, 72–84. DOI: https://doi.org/10.1016/j.carbon.2018.04.010
  23. Yu, S.; Gautam, A.K.; Gao, D.; Kuhn, A.N.; He, H.; Mironenko, A.V.; Yang, H. Implication of surface oxidation of nanoscale molybdenum carbide on electrocatalytic activity. J. Mater. Chem. A 2024, 12, 15163–15176. DOI: https://doi.org/10.1039/D4TA01746C
  24. Yang, Q.; Sun, K.; Xu, Y.; Ding, Z.; Hou, R. Tuning crystal phase of molybdenum carbide catalyst to induce the different selective hydrogenation performance. Appl. Catal. A 2022, 630, 118455. DOI: https://doi.org/10.1016/j.apcata.2021.118455
  25. Xiao, T.-c.; York, A.P.E.; Williams, V.C.; Al-Megren, H.; Hanif, A.; Zhou, X.-y.; Green, M.L.H. Preparation of molybdenum carbides using butane and their catalytic performance. Chem. Mater. 2000, 12, 3896–3905. DOI: https://doi.org/10.1021/cm001157t
  26. Tacey, S.A.; Jankousky, M.; Farberow, C.A. Assessing the role of surface carbon on the surface stability and reactivity of β-Mo2C catalysts. Appl. Surf. Sci. 2022, 593, 153415. DOI: https://doi.org/10.1016/j.apsusc.2022.153415
  27. Wyvratt, B.M.; Gaudet, J.R.; Thompson, L.T. Effects of passivation on synthesis, structure and composition of molybdenum carbide supported platinum water–gas shift catalysts. J. Catal. 2015, 330, 280–287. DOI: https://doi.org/10.1016/j.jcat.2015.07.023
  28. Likith, S.R.J.; Farberow, C.A.; Manna, S.; Abdulslam, A.; Stevanović, V.; Ruddy, D.A.; Schaidle, J.A.; Robichaud, D.J.; Ciobanu, C.V. Thermodynamic stability of molybdenum oxycarbides formed from orthorhombic Mo2C in oxygen-rich environments. J. Phys. Chem. C 2018, 122, 1223–1233. DOI: https://doi.org/10.1021/acs.jpcc.7b11110
  29. Yu, W.; Salciccioli, M.; Xiong, K.; Barteau, M.A.; Vlachos, D.G.; Chen, J.G. Theoretical and experimental studies of C–C versus C–O bond scission of ethylene glycol reaction pathways via metal-modified molybdenum carbides. ACS Catal. 2014, 4, 1409–1418. DOI: https://doi.org/10.1021/cs500124n
  30. Murugappan, K.; Anderson, E.M.; Teschner, D.; Jones, T.E.; Skorupska, K.; Román-Leshkov, Y. Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat. Catal. 2018, 1, 960–967. DOI: https://doi.org/10.1038/s41929-018-0171-9
  31. Kumar, A.; Bhan, A. Oxygen content as a variable to control product selectivity in hydrodeoxygenation reactions on molybdenum carbide catalysts. Chem. Eng. Sci. 2019, 197, 371–378. DOI: https://doi.org/10.1016/j.ces.2018.12.027
  32. Ammal, S.C.; Heyden, A. Active site identification for glycerol hydrodeoxygenation over the oxygen modified molybdenum carbide surface. ACS Catal. 2023, 13, 7499–7513. DOI: https://doi.org/10.1021/acscatal.3c00651
  33. Politi, J.R. d. S.; Viñes, F.; Rodriguez, J.A.; Illas, F. Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces. Phys. Chem. Chem. Phys. 2013, 15, 12617–12625. DOI: https://doi.org/10.1039/c3cp51389k
  34. Ma, Y.; Guan, G.; Hao, X.; Cao, J.; Abudula, A. Molybdenum carbide as alternative catalyst for hydrogen production–A review. Renewable Sustainable Energy Rev. 2017, 75, 1101–1129. DOI: https://doi.org/10.1016/j.rser.2016.11.092
  35. Liu, X.; Salahub, D.R. Application of topological analysis of the electron localization function to the complexes of molybdenum carbide nanoparticles with unsaturated hydrocarbons. Can. J. Chem. 2016, 94, 282–292. DOI: https://doi.org/10.1139/cjc-2015-0075
  36. Ren, J.; Huo, C.-F.; Wang, J.; Cao, Z.; Li, Y.-W.; Jiao, H. Density functional theory study into the adsorption of CO2, H and CHx (x = 0–3) as well as C2H4 on α-Mo2C(0001). Surf. Sci. 2006, 600, 2329–2337. DOI: https://doi.org/10.1016/j.susc.2006.03.027
  37. Zhao, L.; Yuan, H.; Sun, D.; Jia, J.; Yu, J.; Zhang, X.; Liu, X.; Liu, H.; Zhou, W. Active facet regulation of highly aligned molybdenum carbide porous octahedrons via crystal engineering for hydrogen evolution reaction. Nano Energy 2020, 77, 105056. DOI: https://doi.org/10.1016/j.nanoen.2020.105056
  38. Wu, N.; Liu, J.; Zhao, W.; Du, J.; Zhong, W. Molybdenum carbide MXene embedded with nickel sulfide clusters as an efficient electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 17526–17535. DOI: https://doi.org/10.1016/j.ijhydene.2023.01.286
  39. Yang, C.; Zhao, R.; Xiang, H.; Wu, J.; Zhong, W.; Li, X.; Zhang, Q. Structural transformation of molybdenum carbide with extensive active centers for superior hydrogen evolution. Nano Energy 2022, 98, 107232. DOI: https://doi.org/10.1016/j.nanoen.2022.107232
  40. Sullivan, M.M.; Bhan, A. Acid site densities and reactivity of oxygen-modified transition metal carbide catalysts. J. Catal. 2016, 344, 53–58. DOI: https://doi.org/10.1016/j.jcat.2016.09.012
  41. Yao, S.; Yan, B.; Jiang, Z.; Liu, Z.; Wu, Q.; Lee, J.H.; Chen, J.G. Combining CO2 reduction with ethane oxidative dehydrogenation by oxygen-modification of molybdenum carbide. ACS Catal. 2018, 8, 5374–5381. DOI: https://doi.org/10.1021/acscatal.8b00541
  42. Sullivan, M.M.; Held, J.T.; Bhan, A. Structure and site evolution of molybdenum carbide catalysts upon exposure to oxygen. J. Catal. 2015, 326, 82–91. DOI: https://doi.org/10.1016/j.jcat.2015.03.011
  43. Sullivan, M.M.; Bhan, A. Effects of oxygen coverage on rates and selectivity of propane-CO2 reactions on molybdenum carbide. J. Catal. 2018, 357, 195–205. DOI: https://doi.org/10.1016/j.jcat.2017.11.004
  44. Gautam, A.K.; Yu, S.; He, H.; Yang, H.; Mironenko, A.V. Role of surface oxygen in α-MoC catalyst stability and activity under electrooxidation conditions. ChemRxiv 2024. https://doi.org/10.26434/chemrxiv-2024-xwh17. DOI: https://doi.org/10.26434/chemrxiv-2024-xwh17
  45. Park, J.H.; Lee, C.H.; Yu, S.; Kharel, P.; Choi, R.; Zhang, C.; Huang, P.Y.; Kwon, J.S.-I.; Yang, H. Effects of amine-based covalent organic framework on platinum electrocatalyst performance towards hydrogen evolution reaction. Nano Energy 2024, 128, 109947. DOI: https://doi.org/10.1016/j.nanoen.2024.109947