Downloads

Additional Files

Wang, Z., Tiukalova, E., Tai, Y., Chi, M., Nam, J., & Yin, Y. Piezocatalytic ZnS: Mn<sup>2+</sup> Nanocrystals for Enhanced Organic Dye Degradation. Materials and Interfaces. 2024, 1(1), 68–78. doi: https://doi.org/10.53941/mi.2024.100005

Article

Piezocatalytic ZnS: Mn2+ Nanocrystals for Enhanced Organic Dye Degradation

Zhongxiang Wang 1,, Elizaveta Tiukalova 2,, Youyi Tai 3,, Miaofang Chi 2,, Jin Nam 3,*, and
Yadong Yin 1,*,

Department of Chemistry, University of California, Riverside, CA 92521, USA

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Department of Bioengineering, University of California, Riverside, CA 92521, USA

* Correspondence: jnam@engr.ucr.edu (J.N.); yadong.yin@ucr.edu (Y.Y.)

Received: 15 October 2024; Revised: 20 November 2024; Accepted: 21 November 2024; Published: 22 November 2024

 

Abstract: Piezocatalysis, an emerging approach that harnesses mechanical energy to drive chemical reactions, has garnered significant attention due to its potential applications in diverse fields, particularly in environmental remediation. Its broader application, however, is often hindered by the low efficiency of existing piezocatalytic materials. Here, we report the synthesis of Mn2+-doped ZnS nanocrystals with improved piezoelectric properties using an emulsion-based colloidal assembly technique. Through well-controlled Mn2+ doping, these nanocrystals demonstrate high piezocatalytic activity for degrading organic dyes under ultrasonic vibration. The optimal performance is achieved with 3% Mn2+ doping, outperforming many existing piezocatalysts. Mechanistic studies reveal the generation of reactive oxygen species as the primary driving force for degradation. Notably, pre-excitation with UV light further boosts the piezocatalytic efficiency of these metal ion-doped ZnS nanocrystals by filling electron trap states, leading to improved overall performance. This research paves the way for developing high-performance piezocatalysts, expanding the potential of piezocatalysis for a wide range of applications.

Keywords:

piezocatalysis piezoelectricity zinc sulfide pollutant degradation water decontamination

References

  1. Zhang, Q.; Lima, D.Q.; Lee, I.; Zaera, F.; Chi, M.; Yin, Y. A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. Int. Ed. Engl. 2011, 50, 7088–7092.
  2. Joo, J.B.; Zhang, Q.; Dahl, M.; Lee, I.; Goebl, J.; Zaera, F.; Yin, Y. Control of the nanoscale crystallinity in mesoporous TiO2shells for enhanced photocatalytic activity. Energy Environ. Sci. 2012, 5, 6321–6327.
  3. Liu, H.; Joo, J.B.; Dahl, M.; Fu, L.; Zeng, Z.; Yin, Y. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ. Sci. 2015, 8, 286–296.
  4. Berenguer, R.; Sieben, J.M.; Quijada, C.; Morallón, E. Electrocatalytic degradation of phenol on Pt- and Ru-doped Ti/SnO2-Sb anodes in an alkaline medium. Appl. Catal. B Environ. 2016, 199, 394–404.
  5. Du, X.; Oturan, M.A.; Zhou, M.; Belkessa, N.; Su, P.; Cai, J.; Trellu, C.; Mousset, E. Nanostructured electrodes for electrocatalytic advanced oxidation processes: From materials preparation to mechanisms understanding and wastewater treatment applications. Appl. Catal. B Environ. 2021, 296, 120332.
  6. Yan, Q.; Zhang, J.; Xing, M. Cocatalytic Fenton Reaction for Pollutant Control. Cell Rep. Phys. Sci. 2020, 1, 100149.
  7. Wang, Z.; Yin, Y. Upcycling sludge into high-performance catalysts. Nat. Water 2024, 2, 620–621.
  8. Yan, Q.; Lian, C.; Huang, K.; Liang, L.; Yu, H.; Yin, P.; Zhang, J.; Xing, M. Constructing an Acidic Microenvironment by MoS(2) in Heterogeneous Fenton Reaction for Pollutant Control. Angew. Chem. Int. Ed. Engl. 2021, 60, 17155–17163.
  9. Wu, J.M.; Chang, W.E.; Chang, Y.T.; Chang, C.K. Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers. Adv. Mater. 2016, 28, 3718–3725.
  10. Wu, J.; Xu, Q.; Lin, E.; Yuan, B.; Qin, N.; Thatikonda, S.K.; Bao, D. Insights into the Role of Ferroelectric Polarization in Piezocatalysis of Nanocrystalline BaTiO(3). ACS Appl. Mater. Interfaces 2018, 10, 17842–17849.
  11. Tu, S.; Guo, Y.; Zhang, Y.; Hu, C.; Zhang, T.; Ma, T.; Huang, H. Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Adv. Funct. Mater. 2020, 30, 2005158.
  12. Meng, N.; Liu, W.; Jiang, R.; Zhang, Y.; Dunn, S.; Wu, J.; Yan, H. Fundamentals, advances and perspectives of piezocatalysis: A marriage of solid-state physics and catalytic chemistry. Progress. Mater. Sci. 2023, 138, 101161.
  13. Shi, H.; Liu, Y.; Bai, Y.; Lv, H.; Zhou, W.; Liu, Y.; Yu, D.-G. Progress in defect engineering strategies to enhance piezoelectric catalysis for efficient water treatment and energy regeneration. Sep. Purif. Technol. 2024, 330, 125247.
  14. Tian, W.; Han, J.; Wan, L.; Li, N.; Chen, D.; Xu, Q.; Li, H.; Lu, J. Enhanced piezocatalytic activity in ion-doped SnS2 via lattice distortion engineering for BPA degradation and hydrogen production. Nano Energy 2023, 107, 108165.
  15. Yuan, B.; Wu, J.; Qin, N.; Lin, E.; Bao, D. Enhanced Piezocatalytic Performance of (Ba,Sr)TiO3 Nanowires to Degrade Organic Pollutants. ACS Appl. Nano Mater. 2018, 1, 5119–5127.
  16. Chen, L.; Jia, Y.; Zhao, J.; Ma, J.; Wu, Z.; Yuan, G.; Cui, X. Strong piezocatalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition. J. Colloid. Interface Sci. 2021, 586, 758–765.
  17. Kalhori, H.; Amaechi, I.C.; Youssef, A.H.; Ruediger, A.; Pignolet, A. Catalytic Activity of BaTiO3 Nanoparticles for Wastewater Treatment: Piezo- or Sono-Driven? ACS Appl. Nano Mater. 2023, 6, 1686–1695.
  18. Feng, W.; Yuan, J.; Zhang, L.; Hu, W.; Wu, Z.; Wang, X.; Huang, X.; Liu, P.; Zhang, S. Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O. Appl. Catal. B: Environ. 2020, 277, 119250.
  19. Liu, W.; Fu, P.; Zhang, Y.; Xu, H.; Wang, H.; Xing, M. Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes. Proc. Natl. Acad. Sci. USA 2023, 120, e2218813120.
  20. Zhang, M.; Zhao, S.; Zhao, Z.; Li, S.; Wang, F. Piezocatalytic Effect Induced Hydrogen Production from Water over Non-noble Metal Ni Deposited Ultralong GaN Nanowires. ACS Appl. Mater. Interfaces 2021, 13, 10916–10924.
  21. Chen, S.; Zhu, P.; Mao, L.; Wu, W.; Lin, H.; Xu, D.; Lu, X.; Shi, J. Piezocatalytic Medicine: An Emerging Frontier using Piezoelectric Materials for Biomedical Applications. Adv. Mater. 2023, 35, e2208256.
  22. Wang, Y.; Wen, X.; Jia, Y.; Huang, M.; Wang, F.; Zhang, X.; Bai, Y.; Yuan, G.; Wang, Y. Piezo-catalysis for nondestructive tooth whitening. Nat. Commun. 2020, 11, 1328.
  23. Wang, Y.; Zang, P.; Yang, D.; Zhang, R.; Gai, S.; Yang, P. The fundamentals and applications of piezoelectric materials for tumor therapy: Recent advances and outlook. Mater. Horiz. 2023, 10, 1140–1184.
  24. Cafarelli, A.; Marino, A.; Vannozzi, L.; Puigmarti-Luis, J.; Pane, S.; Ciofani, G.; Ricotti, L. Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption. ACS Nano 2021, 15, 11066–11086.
  25. Polonini, H.C.; Brandao, H.M.; Raposo, N.R.; Mouton, L.; Yepremian, C.; Coute, A.; Brayner, R. Ecotoxicological studies of micro- and nanosized barium titanate on aquatic photosynthetic microorganisms. Aquat. Toxicol. 2014, 154, 58–70.
  26. Ahamed, M.; Akhtar, M.J.; Khan, M.A.M.; Alhadlaq, H.A.; Alshamsan, A. Barium Titanate (BaTiO(3)) Nanoparticles Exert Cytotoxicity through Oxidative Stress in Human Lung Carcinoma (A549) Cells. Nanomater. 2020, 10, 2309.
  27. Wang, Z.; Tai, Y.; Nam, J.; Yin, Y. Calcination-Induced Transformation of ZnS:Mn2+ Nanorods to Microparticles for Enhanced Mechanoluminescence. Chem. Mater. 2023, 35, 6845–6852.
  28. Wang, Z.; Tai, Y.; Ye, Z.; Nam, J.; Yin, Y. Integration of ZnS:Mn²⁺ Microparticles into Electrospun PVDF-Based Nanofibers for Enhanced Mechanoluminescence. Adv. Funct. Mater. 2024, 2410358. https://doi.org/10.1002/adfm.202410358.
  29. Kumara, C.; Armstrong, B.; Lyo, I.; Lee, H.W.; Qu, J. Organic-modified ZnS nanoparticles as a high-performance lubricant additive. RSC Adv. 2023, 13, 7009–7019.
  30. Joo, J.; Na, H.B.; Yu, T.; Yu, J.H.; Kim, Y.W.; Wu, F.; Zhang, J.Z.; Hyeon, T. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals. J. Am. Chem. Soc. 2003, 125, 11100–11105.
  31. Bai, F.; Wang, D.; Huo, Z.; Chen, W.; Liu, L.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. A Versatile Bottom-up Assembly Approach to Colloidal Spheres from Nanocrystals. Angew. Chem. Int. Ed. 2007, 119, 6770–6773.
  32. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interface Sci. 1968, 26, 62–69.
  33. Ma, L.; Amador, E.; Belev, G.S.; Gautam, C.; Zhou, W.; Liu, J.P.; Sammynaiken, R.; Chen, W. Tuning Ag+ and Mn2+ doping in ZnS:Ag,Mn embedded polymers for flexible white light emitting films. Soft Sci. 2024, 4, 10.
  34. Mukhina, M.V.; Tresback, J.; Ondry, J.C.; Akey, A.; Alivisatos, A.P.; Kleckner, N. Single-Particle Studies Reveal a Nanoscale Mechanism for Elastic, Bright, and Repeatable ZnS:Mn Mechanoluminescence in a Low-Pressure Regime. ACS Nano 2021, 15, 4115–4133.
  35. Wu, X.; Zhu, X.; Chong, P.; Liu, J.; Andre, L.N.; Ong, K.S.; Brinson, K. Jr.; Mahdi, A.I.; Li, J.; Fenno, L.E.; et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc. Natl. Acad. Sci. USA 2019, 116, 26332–26342.
  36. Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C–H bonds under ambient conditions. Chem. Sci. 2012, 3, 2812.
  37. Zhao, D.; Sheng, G.; Chen, C.; Wang, X. Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO2 dyade structure. Appl. Catal. B Environ. 2012, 111–112, 303–308.
  38. Clément, J.-L.; Ferré, N.; Siri, D.; Karoui, H.; Rockenbauer, A.; Tordo, P. Assignment of the EPR Spectrum of 5,5-Dimethyl-1-pyrroline N-Oxide (DMPO) Superoxide Spin Adduct. J. Org. Chem. 2005, 70, 1198–1203.
  39. Asgar, H.; Semeykina, V.; Hunt, M.; Mohammed, S.; Kuzmenko, I.; Zharov, I.; Gadikota, G. Thermally-Induced morphological evolution of spherical silica nanoparticles using in-operando X-ray scattering measurements. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124260.
  40. Sharma, S.; Khare, N. Hierarchical Bi2S3 nanoflowers: A novel photocatalyst for enhanced photocatalytic degradation of binary mixture of Rhodamine B and Methylene blue dyes and degradation of mixture of p-nitrophenol and p-chlorophenol. Adv. Powder Technol. 2018, 29, 3336–3347.
  41. Wu, J.; Qin, N.; Bao, D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51.
  42. Alshehri, A.A.; Malik, M.A. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. J. Mater. Sci. Mater. Electron. 2019, 30, 16156–16173.
  43. Li, S.; Zhao, Z.; Yu, D.; Zhao, J.-Z.; Su, Y.; Liu, Y.; Lin, Y.; Liu, W.; Xu, H.; Zhang, Z. Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy 2019, 66, 104083.
  44. Mushtaq, F.; Chen, X.; Hoop, M.; Torlakcik, H.; Pellicer, E.; Sort, J.; Gattinoni, C.; Nelson, B.J.; Pane, S. Piezoelectrically Enhanced Photocatalysis with BiFeO(3) Nanostructures for Efficient Water Remediation. iScience 2018, 4, 236–246.
  45. Amdouni, W.; Fricaudet, M.; Otonicar, M.; Garcia, V.; Fusil, S.; Kreisel, J.; Maghraoui-Meherzi, H.; Dkhil, B. BiFeO(3) Nanoparticles: The “Holy-Grail” of Piezo-Photocatalysts? Adv. Mater. 2023, 35, e2301841.
  46. Corfdir, P.; Hauswald, C.; Zettler, J.K.; Flissikowski, T.; Lähnemann, J.; Fernández-Garrido, S.; Geelhaar, L.; Grahn, H.T.; Brandt, O. Stacking faults as quantum wells in nanowires: Density of states, oscillator strength, and radiative efficiency. Phys. Rev. B 2014, 90, 195309.
  47. Wang, Y.; Wang, T.; Arandiyan, H.; Song, G.; Sun, H.; Sabri, Y.; Zhao, C.; Shao, Z.; Kawi, S. Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review. Adv. Mater. 2024, 36, e2313378.
  48. Sebti, E.; Evans, H.A.; Chen, H.; Richardson, P.M.; White, K.M.; Giovine, R.; Koirala, K.P.; Xu, Y.; Gonzalez-Correa, E.; Wang, C.; et al. Stacking Faults Assist Lithium-Ion Conduction in a Halide-Based Superionic Conductor. J. Am. Chem. Soc. 2022, 144, 5795–5811.
  49. Moreno, H.; Domingues, G.L.; Assis, M.; Ortega, P.P.; Mastelaro, V.R.; Ramirez, M.A.; Simoes, A.Z. The Relationship between Photoluminescence Emissions and Photocatalytic Activity of CeO(2) Nanocrystals. Inorg. Chem. 2023, 62, 4291–4303.
  50. Pinatti, I.M.; Tello, A.C.M.; Pereira, P.F.S.; Trench, A.B.; Teodoro, M.D.; Rosa, I.L.V.; da Silva, A.B.F.; Longo, E.; Andres, J.; Simoes, A.Z. Towards a relationship between photoluminescence emissions and photocatalytic activity of Ag(2)SeO(4): Combining experimental data and theoretical insights. Dalton Trans. 2022, 51, 11346–11362.
  51. Ang, E.H.; Zeng, J.; Subramanian, G.S.; Chellappan, V.; Sudhaharan, T.; Padmanabhan, P.; Gulyás, B.; Tamil Selvan, S. Silica-Coated Mn-Doped ZnS Nanocrystals for Cancer Theranostics. ACS Appl. Nano Mater. 2020, 3, 3088–3096.
  52. Dai, L.; Strelow, C.; Kipp, T.; Mews, A.; Benkenstein, I.; Eifler, D.; Vuong, T.H.; Rabeah, J.; McGettrick, J.; Lesyuk, R.; et al. Colloidal Manganese-Doped ZnS Nanoplatelets and Their Optical Properties. Chem. Mater. 2020, 33, 275–284.
  53. Liu, H.; Zheng, Y.; Liu, S.; Zhao, J.; Song, Z.; Peng, D.; Liu, Q. Realizing Red Mechanoluminescence of ZnS:Mn2+ Through Ferromagnetic Coupling. Adv. Funct. Mater. 2024, 34, 2314422.