Downloads

Ge, Z.-Q., Chu, C., Wang, C., Li, R., Li, J., & Jiang, S. P. Recent Progress on Layered Double Hydroxides for Electrocatalytic Small Molecules Oxidation to Synthesize High-Value Chemicals and Degrade Pollutants. Science for Energy and Environment. 2024. doi: https://doi.org/10.53941/see.2024.1000010

Review

Recent Progress on Layered Double Hydroxides for Electrocatalytic Small Molecules Oxidation to Synthesize High-Value Chemicals and Degrade Pollutants

Zi-Qi Ge 1 Chao Chu 2 Cong Wang 3 Ruchun Li 4,* Jingwei Li 2,* San Ping Jiang 2,*

1 Jilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping 136000, China

2 National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528216, China

3 Bingtuan Energy Development Institute, Shihezi University, Shihezi 832000, China

4 Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China

* Correspondence: S.Jiang@curtin.edu.au (S. P. J.); lijingwei@xhlab.cn (J. L.); liruchun@ynnu.edu.cn (R. L.)

Received: 25 October 2025; Revised: 12 November 2024; Accepted: 6 December 2024; Published: 10 December 2024

Abstract: Researchers worldwide are developing innovative luminescent systems with exceptional features like high sensitivity. Luminescent frameworks based on aggregation-induced emission (AIE) have emerged as promising candidates for various applications. Over the past decade, porous materials like metal-organic cages (MOCs) incorporating AIE luminogens (AIEgens) have demonstrated exceptional performance. Chirality plays a significant role in specific non-racemic luminescent systems, particularly circularly polarized luminescence (CPL). Chiral organic materials coordinated with metals, including MOCs, have gained importance as they combine organic ligands and coordination-bonded metal centers, enabling the design of novel structures with CPL. These materials have shown exciting potential applications in fields like CPL-OLED, chiral recognition, and sensing. This review article provides an overview of the recent progress in emissive porous materials, specifically MOCs, and their possible applications. Additionally, the review focuses on the recent progress in AIEgen-based cages, CPL-active cages, and non-AIEgen-based cages, their practical applications in sensing and enantioselectivity, and future prospects. Key challenges in AIE-based POCs and MOCs include limited stability, affecting their use in wide-surface thin films, and the need to understand molecular structure and topology impacts. Future efforts should enhance luminescence efficiency and explore applications in chiral sensing, supramolecular assemblies, bioimaging, and optoelectronics, driving innovation in smart materials.

Keywords:

layered double hydroxides electrocatalytic small molecules oxidation reaction oxygen evolution reaction hydrogen evolution reaction High-value chemicals pollutant degradation

References

  1. Khan, M.A.; Al-Attas, T.; Roy, S.; Rahman, M.M.; Ghaffour, N.; Thangadurai, V.; Larter, S.; Hu, J.; Ajayan, P.M.; Kibria, M.G. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy Environ. Sci. 2021, 14, 4831–4839. https://doi.org/10.1039/d1ee00870f.
  2. Li, J.; Wang, X.; Fang, H.; Guo, X.; Zhou, R.; Wang, C.; Li, J.; Ghazzal, M.N.; Rui, Z. Unraveling the role of surface and interfacial defects in hydrogen production to construct an all-in-one broken-gap photocatalyst. J. Mater. Chem. A 2023, 11, 25639–25649. https://doi.org/10.1039/d3ta03079b.
  3. Zhao, X.; Wu, G.; Zheng, X.; Jiang, P.; Yi, J.d.; Zhou, H.; Gao, X.; Yu, Z.Q.; Wu, Y. A Double Atomic‐Tuned RuBi SAA/Bi@OG Nanostructure with Optimum Charge Redistribution for Efficient Hydrogen Evolution. Angew. Chem. Int. Ed. 2023, 62, e202300879. https://doi.org/10.1002/anie.202300879.
  4. Li, J.; Ping Jiang, S. Small Molecule Oxidation Facilitated Seawater Splitting for Hydrogen Production: Opportunities and Challenges. ChemCatChem 2024, e202400258. https://doi.org/10.1002/cctc.202400258.
  5. Liu, H.; Zhang, Z.; Fang, J.; Li, M.; Sendeku, M.G.; Wang, X.; Wu, H.; Li, Y.; Ge, J.; Zhuang, Z.; et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. Joule 2023, 7, 558–573. https://doi.org/10.1016/j.joule.2023.02.012.
  6. Yang, G.; Jiao, Y.; Yan, H.; Xie, Y.; Wu, A.; Dong, X.; Guo, D.; Tian, C.; Fu, H. Interfacial Engineering of MoO2‐FeP Heterojunction for Highly Efficient Hydrogen Evolution Coupled with Biomass Electrooxidation. Adv. Mater. 2020, 32, 20000455. https://doi.org/10.1002/adma.202000455.
  7. Lee, S.-Y.; Kim, I.-S.; Cho, H.-S.; Kim, C.-H.; Lee, Y.-K. Resolving Potential-Dependent Degradation of Electrodeposited Ni(OH)2 Catalysts in Alkaline Oxygen Evolution Reaction (OER): In Situ XANES Studies. Appl. Catal. B Environ. 2021, 284, 119729. https://doi.org/10.1016/j.apcatb.2020.119729.
  8. Hu, S.; Feng, C.; Wang, S.; Liu, J.; Wu, H.; Zhang, L.; Zhang, J. Ni3N/NF as Bifunctional Catalysts for Both Hydrogen Generation and Urea Decomposition. ACS Appl. Mater. Interfaces 2019, 11, 13168–13175. https://doi.org/10.1021/acsami.8b19052.
  9. Tanabe, Y.; Ito, Y.; Sugawara, K.; Jeong, S.; Ohto, T.; Nishiuchi, T.; Kawada, N.; Kimura, S.; Aleman, C.F.; Takahashi, T.; et al. Coexistence of Urbach‐Tail‐Like Localized States and Metallic Conduction Channels in Nitrogen‐Doped 3D Curved Graphene. Adv. Mater. 2022, 34, 2205986. https://doi.org/10.1002/adma.202205986.
  10. Zhang, X.; Hui, L.; Yan, D.; Li, J.; Chen, X.; Wu, H.; Li, Y. Defect Rich Structure Activated 3D Palladium Catalyst for Methanol Oxidation Reaction. Angew. Chem. Int. Ed. 2023, 62, e202308968. https://doi.org/10.1002/anie.202308968.
  11. Wang, Q.; Chen, L.; Guan, S.; Zhang, X.; Wang, B.; Cao, X.; Yu, Z.; He, Y.; Evans, D.G.; Feng, J.; et al. Ultrathin and Vacancy-Rich CoAl-Layered Double Hydroxide/Graphite Oxide Catalysts: Promotional Effect of Cobalt Vacancies and Oxygen Vacancies in Alcohol Oxidation. ACS Catal. 2018, 8, 3104–3115. https://doi.org/10.1021/acscatal.7b03655.
  12. Ge, Z.Q.; Li, J.; Zhang, H.J.; Liu, C.; Che, G.; Liu, Z.Q. p–d Orbitals Coupling Heterosites of Ni2P/NiFe‐LDH Interface Enable O-H Cleavage for Water Splitting. Adv. Funct. Mater. 2024, 34, 2411024. https://doi.org/10.1002/adfm.202411024.
  13. Bian, X.; Zhang, S.; Zhao, Y.; Shi, R.; Zhang, T. Layered double hydroxide‐based photocatalytic materials toward renewable solar fuels production. InfoMat 2021, 3, 719–738. https://doi.org/10.1002/inf2.12192.
  14. Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2020, 11, 2522. https://doi.org/10.1038/ncomms5477.
  15. Ning, F.; Shao, M.; Xu, S.; Fu, Y.; Zhang, R.; Wei, M.; Evans, D.G.; Duan, X. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 2016, 9, 2633–2643. https://doi.org/10.1039/c6ee01092j.
  16. Ren, J.; Ouyang, S.; Xu, H.; Meng, X.; Wang, T.; Wang, D.; Ye, J. Targeting Activation of CO2 and H2 over Ru‐Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2 Methanation in Flow‐Type System. Adv. Energy Mater. 2016, 7, 1601657. https://doi.org/10.1002/aenm.201601657.
  17. Ren, M.; Zeng, W.; Li, Z.; Cao, S.; Liu, C.; Ouyang, S.; Zhang, T.; Cui, Y.; Yuan, H. CoAl-layered double hydroxide nanosheet-based fluorescence assay for fast DNA detection. Spectrochim. Acta A 2020, 240, 118618. https://doi.org/10.1016/j.saa.2020.118618.
  18. Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E.K.; Catlow, C.R.A.; Yan, K. Electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural and furfural over oxygen vacancy-rich NiCoMn-layered double hydroxides nanosheets. Green Chem. 2021, 23, 4034–4043. https://doi.org/10.1039/d1gc00901j.
  19. Kim, J.S.; Kim, B.; Kim, H.; Kang, K. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1702774. https://doi.org/10.1002/aenm.201702774.
  20. Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem. Rev. 2020, 120, 11986–12043. https://doi.org/10.1021/acs.chemrev.0c00797.
  21. Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C.-L.; Huang, Y.-C.; Xiao, Z.; Wei, Z.; Du, S.; Chen, C.; et al. Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation. Chem 2020, 6, 2974–2993. https://doi.org/10.1016/j.chempr.2020.07.022.
  22. Zeng, L.; Chen, Y.; Sun, M.; Huang, Q.; Sun, K.; Ma, J.; Li, J.; Tan, H.; Li, M.; Pan, Y.; et al. Cooperative Rh-O5/Ni(Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production. J. Am. Chem. Soc. 2023, 145, 17577–17587. https://doi.org/10.1021/jacs.3c02570.
  23. Li, Z.; Li, B.; Yu, M.; Yu, C.; Shen, P. Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. Int. J. Hydrog. Energy. 2022, 47, 26956–26977. https://doi.org/10.1016/j.ijhydene.2022.06.049.
  24. Li, L.; Zhang, L.; Gou, L.; Wei, S.; Hou, X.; Wu, L. High-performance methanol electrolysis towards energy-saving hydrogen production: Using Cu2O-Cu decorated Ni2P nanoarray as bifunctional monolithic catalyst. Chem. Eng. J. 2023, 454, 140292. https://doi.org/10.1016/j.cej.2022.140292.
  25. Han, Y.; Wang, J.; Liu, Y.; Li, T.; Wang, T.; Li, X.; Ye, X.; Li, G.; Li, J.; Hu, W.; et al. Stability challenges and opportunities of NiFe‐based electrocatalysts for oxygen evolution reaction in alkaline media. Carbon Neutralization 2024, 3, 172–198. https://doi.org/10.1002/cnl2.110.
  26. Zhang, L.-C.; Chen, H.; Hou, G.-R.; Zhang, L.-Z.; Li, Q.-L.; Wu, Y.-K.; Xu, M.; Bao, S.-J. Puzzle-inspired carbon dots coupled with cobalt phosphide for constructing a highly-effective overall water splitting interface. Chem. Commun. 2020, 56, 257–260. https://doi.org/10.1039/c9cc08032e.
  27. Qi, Y.-F.; Wang, K.-Y.; Sun, Y.; Wang, J.; Wang, C. Engineering the Electronic Structure of NiFe Layered Double Hydroxide Nanosheet Array by Implanting Cationic Vacancies for Efficient Electrochemical Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Sustain. Chem. Eng. 2021, 10, 645–654. https://doi.org/10.1021/acssuschemeng.1c07482.
  28. Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. Trimetallic NiCoFe-Layered Double Hydroxides Nanosheets Efficient for Oxygen Evolution and Highly Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural. ACS Catal. 2020, 10, 5179–5189. https://doi.org/10.1021/acscatal.0c00007.
  29. Tan, L.; Wang, Z.; Zhao, Y.; Song, Y.F. Recent Progress on Nanostructured Layered Double Hydroxides for Visible‐Light‐Induced Photoreduction of CO2. Chem. Asian J. 2020, 15, 3380–3389. https://doi.org/10.1002/asia.202000963.
  30. Moges, E.A.; Chang, C.-Y.; Tsai, M.-C.; Su, W.-N.; Hwang, B.J. Electrocatalysts for value-added electrolysis coupled with hydrogen evolution. EES Catal. 2023, 1, 413–433. https://doi.org/10.1039/d3ey00017f.
  31. Song, Y.; Ji, K.; Duan, H.; Shao, M. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration 2021, 1, 20210050. https://doi.org/10.1002/exp.20210050.
  32. Li, D.; Tu, J.; Lu, Y.; Zhang, B. Recent advances in hybrid water electrolysis for energy-saving hydrogen production. Green Chem. Eng. 2023, 4, 17–29. https://doi.org/10.1016/j.gce.2022.11.001.
  33. Ning, C.; Bai, S.; Wang, J.; Li, Z.; Han, Z.; Zhao, Y.; O'Hare, D.; Song, Y.-F. Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coord. Chem. Rev. 2023, 480, 215008. https://doi.org/10.1016/j.ccr.2022.215008.
  34. Kang, W.; Wei, R.; Yin, H.; Li, D.; Chen, Z.; Huang, Q.; Zhang, P.; Jing, H.; Wang, X.; Li, C. Unraveling Sequential Oxidation Kinetics and Determining Roles of Multi-Cobalt Active Sites on Co3O4 Catalyst for Water Oxidation. J. Am. Chem. Soc. 2023, 145, 3470–3477. https://doi.org/10.1021/jacs.2c11508.
  35. Wang, C.; Zhai, P.; Xia, M.; Liu, W.; Gao, J.; Sun, L.; Hou, J. Identification of the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution Reaction. Adv. Mater. 2023, 35, 2209307. https://doi.org/10.1002/adma.202209307.
  36. Haase, F.T.; Bergmann, A.; Jones, T.E.; Timoshenko, J.; Herzog, A.; Jeon, H.S.; Rettenmaier, C.; Cuenya, B.R. Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nat. Energy 2022, 7, 765–773. https://doi.org/10.1038/s41560-022-01083-w.
  37. Andaveh, R.; Sabour Rouhaghdam, A.; Ai, J.; Maleki, M.; Wang, K.; Seif, A.; Barati Darband, G.; Li, J. Boosting the electrocatalytic activity of NiSe by introducing MnCo as an efficient heterostructured electrocatalyst for large-current-density alkaline seawater splitting. Appl. Catal. B Environ. 2023, 325, 122355. https://doi.org/10.1016/j.apcatb.2022.122355.
  38. Wang, X.; Zhong, H.; Xi, S.; Lee, W.S.V.; Xue, J. Understanding of Oxygen Redox in the Oxygen Evolution Reaction. Advanced Materials 2022, 34. https://doi.org/10.1002/adma.202107956.
  39. Zhou, Y.; Sun, S.; Song, J.; Xi, S.; Chen, B.; Du, Y.; Fisher, A.C.; Cheng, F.; Wang, X.; Zhang, H.; et al. Enlarged Co-O Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction. Adv. Mater. 2023, 35, 2209307. https://doi.org/10.1002/adma.201802912.
  40. Khatun, S.; Hirani, H.; Roy, P. Seawater electrocatalysis: activity and selectivity. J. Mater. Chem. A 2021, 9, 74–86. https://doi.org/10.1039/d0ta08709b.
  41. Xu, S.; Jiao, D.; Ruan, X.; Jin, Z.; Qiu, Y.; Feng, Z.; Zheng, L.; Fan, J.; Zheng, W.; Cui, X. O‐2p Hybridization Enhanced Transformation of Active γ‐NiOOH by Chromium Doping for Efficient Urea Oxidation Reaction. Adv. Funct. Mater. 2024, 34, 2401265. https://doi.org/10.1002/adfm.202401265.
  42. Zhang, L.; Li, L.; Liang, J.; Fan, X.; He, X.; Chen, J.; Li, J.; Li, Z.; Cai, Z.; Sun, S.; et al. Highly efficient and stable oxygen evolution from seawater enabled by a hierarchical NiMoSx microcolumn@NiFe-layered double hydroxide nanosheet array. Inorg. Chem. Front. 2023, 10, 2766–2775. https://doi.org/10.1039/d3qi00341h.
  43. Zhang, L.; Zhao, H.; Xu, S.; Liu, Q.; Li, T.; Luo, Y.; Gao, S.; Shi, X.; Asiri, A.M.; Sun, X. Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting. Small Struct. 2021, 2, 2000048. https://doi.org/10.1002/sstr.202000048.
  44. Pei, Y.; Cheng, J.; Zhong, H.; Pi, Z.; Zhao, Y.; Jin, F. Sulfide-oxidation-assisted electrochemical water splitting for H2 production on a bifunctional Cu2S/nickel foam catalyst. Green Chem. 2021, 23, 6975–6983. https://doi.org/10.1039/d1gc01857d.
  45. Wei, J.; Wang, J.; Sun, X. H2O2 treatment boosts activity of NiFe layered double hydroxide for electro-catalytic oxidation of urea. J. Environ. Sci. 2023, 129, 152–160. https://doi.org/10.1016/j.jes.2022.08.023.
  46. Fan, H.; Jia, J.; Wang, D.; Fan, J.; Wu, J.; Zhao, J.; Cui, X. High-valence Zr-incorporated nickel phosphide boosting reaction kinetics for highly efficient and robust overall water splitting. Chem. Eng. J. 2023, 455, 140908. https://doi.org/10.1016/j.cej.2022.140908.
  47. Huo, J.M.; Wang, Y.; Xue, J.N.; Yuan, W.Y.; Zhai, Q.G.; Hu, M.C.; Li, S.N.; Chen, Y. High‐Valence Metal Doping Induced Lattice Expansion for M‐FeNi LDH toward Enhanced Urea Oxidation Electrocatalytic Activities. Small 2024, 20, 2305877. https://doi.org/10.1002/smll.202305877.
  48. Shao, W.; Wang, Q.; Huang, C.; Zhang, D. High valence state metal-ion doped Fe–Ni layered double hydroxides for oxygen evolution electrocatalysts and asymmetric supercapacitors. Adv. Mater. 2022, 3, 1816–1824. https://doi.org/10.1039/d1ma01125a.
  49. Xu, X.; Ullah, H.; Humayun, M.; Li, L.; Zhang, X.; Bououdina, M.; Debecker, D.P.; Huo, K.; Wang, D.; Wang, C. Fluorinated Ni‐O‐C Heterogeneous Catalyst for Efficient Urea‐Assisted Hydrogen Production. Adv. Funct. Mater. 2023, 33, 2303986. https://doi.org/10.1002/adfm.202303986.
  50. Jiang, Z.; Song, S.; Zheng, X.; Liang, X.; Li, Z.; Gu, H.; Li, Z.; Wang, Y.; Liu, S.; Chen, W.; et al. Lattice Strain and Schottky Junction Dual Regulation Boosts Ultrafine Ruthenium Nanoparticles Anchored on a N-Modified Carbon Catalyst for H2 Production. J. Am. Chem. Soc. 2022, 144, 19619–19626. https://doi.org/10.1021/jacs.2c09613.
  51. Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W. Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Appl. Catal. B Environ. 2021, 285, 119789. https://doi.org/10.1016/j.apcatb.2020.119789.
  52. Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335. https://doi.org/10.1038/s41467-019-13375-z.
  53. Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angew. Chem. Int. Ed. 2021, 60, 19572–19590. https://doi.org/10.1002/anie.202101522.
  54. Wu, Z.; Bai, S.; Shen, T.; Liu, G.; Song, Z.; Hu, Y.; Sun, X.; Zheng, L.; Song, Y.F. Ultrathin NiV Layered Double Hydroxide for Methanol Electrooxidation: Understanding the Proton Detachment Kinetics and Methanol Dehydrogenation Oxidation. Small 2024, 20, 2307975. https://doi.org/10.1002/smll.202307975.
  55. Talib, S.H.; Lu, Z.; Yu, X.; Ahmad, K.; Bashir, B.; Yang, Z.; Li, J. Theoretical Inspection of M1/PMA Single-Atom Electrocatalyst: Ultra-High Performance for Water Splitting (HER/OER) and Oxygen Reduction Reactions (OER). ACS Catal. 2021, 11, 8929–8941. https://doi.org/10.1021/acscatal.1c01294.
  56. Zhu, B.; Dong, B.; Wang, F.; Yang, Q.; He, Y.; Zhang, C.; Jin, P.; Feng, L. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides. Nat. Commun. 2023, 14, 1686. https://doi.org/10.1038/s41467-023-37441-9.
  57. Li, S.; Ma, R.; Hu, J.; Li, Z.; Liu, L.; Wang, X.; Lu, Y.; Sterbinsky, G.E.; Liu, S.; Zheng, L.; et al. Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun. 2022, 13, 2916. https://doi.org/10.1038/s41467-022-30670-4.
  58. Jiang, S.; Xiao, T.; Xu, C.; Wang, S.; Peng, H.Q.; Zhang, W.; Liu, B.; Song, Y.F. Passivating Oxygen Evolution Activity of NiFe‐LDH through Heterostructure Engineering to Realize High‐Efficiency Electrocatalytic Formate and Hydrogen Co‐Production. Small 2023, 19, 2208027. https://doi.org/10.1002/smll.202208027.
  59. Barwe, S.; Weidner, J.; Cychy, S.; Morales, D.M.; Dieckhöfer, S.; Hiltrop, D.; Masa, J.; Muhler, M.; Schuhmann, W. Electrocatalytic Oxidation of 5‐(Hydroxymethyl)furfural Using High‐Surface‐Area Nickel Boride. Angew. Chem. Int. Ed. 2018, 57, 11460–11464. https://doi.org/10.1002/anie.201806298.
  60. Mondal, B.; Karjule, N.; Singh, C.; Shimoni, R.; Volokh, M.; Hod, I.; Shalom, M. Unraveling the Mechanisms of Electrocatalytic Oxygenation and Dehydrogenation of Organic Molecules to Value‐Added Chemicals Over a Ni–Fe Oxide Catalyst. Adv. Energy Mater. 2021, 11, 2101858. https://doi.org/10.1002/aenm.202101858.
  61. Bell, E.L.; Smithson, R.; Kilbride, S.; Foster, J.; Hardy, F.J.; Ramachandran, S.; Tedstone, A.A.; Haigh, S.J.; Garforth, A.A.; Day, P.J.R.; et al. Directed evolution of an efficient and thermostable PET depolymerase. Nat. Catal. 2022, 5, 673–681. https://doi.org/10.1038/s41929-022-00821-3.
  62. Zhang, Z.; Huber, G.W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 2018, 47, 1351–1390. https://doi.org/10.1039/c7cs00213k.
  63. Cai, J.; Li, K.; Wu, S. Recent advances in catalytic conversion of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Biomass Bioenergy 2022, 158, 106358. https://doi.org/10.1016/j.biombioe.2022.106358
  64. Song, Y.; Li, Z.; Fan, K.; Ren, Z.; Xie, W.; Yang, Y.; Shao, M.; Wei, M. Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation. Appl. Catal. B Environ. 2021, 299, 120669. https://doi.org/10.1016/j.apcatb.2021.120669.
  65. Cai, Z.; Wang, P.; Zhang, J.; Chen, A.; Zhang, J.; Yan, Y.; Wang, X. Reinforced Layered Double Hydroxide Oxygen‐Evolution Electrocatalysts: A Polyoxometallic Acid Wet‐Etching Approach and Synergistic Mechanism. Adv. Mater. 2022, 34, 2110696. https://doi.org/10.1002/adma.202110696.
  66. Chen, D.; Ding, Y.; Cao, X.; Wang, L.; Lee, H.; Lin, G.; Li, W.; Ding, G.; Sun, L. Highly Efficient Biomass Upgrading by a Ni−Cu Electrocatalyst Featuring Passivation of Water Oxidation Activity. Angew. Chem. Int. Ed. 2023, 62, e202309478. https://doi.org/10.1002/anie.202309478.
  67. Xu, G.-R.; Batmunkh, M.; Donne, S.; Jin, H.; Jiang, J.-X.; Chen, Y.; Ma, T. Ruthenium(iii) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. J. Mater. Chem. A 2019, 7, 25433–25440. https://doi.org/10.1039/c9ta10267a.
  68. Liu, Z.; Li, Y.; Guo, H.; Zhao, J.; Zhang, H.; Song, R. Interface engineering of amorphous/crystalline heterojunctions with synergistic Ru doping for efficient hydrazine oxidation assisted overall water splitting. J. Mater. Chem. A 2023, 11, 24667–24677. https://doi.org/10.1039/d3ta05082c.
  69. Zhu, Y.; He, Z.; Choi, Y.; Chen, H.; Li, X.; Zhao, B.; Yu, Y.; Zhang, H.; Stoerzinger, K.A.; Feng, Z.; et al. Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides. Nat. Commun. 2020, 11, 4299. https://doi.org/10.1038/s41467-020-17657-9.
  70. Park, M.; Gu, M.; Kim, B.-S. Tailorable Electrocatalytic 5-Hydroxymethylfurfural Oxidation and H2 Production: Architecture–Performance Relationship in Bifunctional Multilayer Electrodes. ACS Nano 2020, 14, 6812–6822. https://doi.org/10.1021/acsnano.0c00581.
  71. Hu, S.; Tan, Y.; Feng, C.; Wu, H.; Zhang, J.; Mei, H. Synthesis of N doped NiZnCu-layered double hydroxides with reduced graphene oxide on nickel foam as versatile electrocatalysts for hydrogen production in hybrid-water electrolysis. J. Power Sources 2020, 453, 227872. https://doi.org/10.1016/j.jpowsour.2020.227872.
  72. Liu, G.; Nie, T.; Wang, H.; Shen, T.; Sun, X.; Bai, S.; Zheng, L.; Song, Y.-F. Size Sensitivity of Supported Palladium Species on Layered Double Hydroxides for the Electro-oxidation Dehydrogenation of Hydrazine: From Nanoparticles to Nanoclusters and Single Atoms. ACS Catal. 2022, 12, 10711–10717. https://doi.org/10.1021/acscatal.2c02628.
  73. Hu, Y.; Chao, T.; Li, Y.; Liu, P.; Zhao, T.; Yu, G.; Chen, C.; Liang, X.; Jin, H.; Niu, S.; et al. Cooperative Ni(Co)‐Ru‐P Sites Activate Dehydrogenation for Hydrazine Oxidation Assisting Self‐powered H2 Production. Angew. Chem. Int. Ed. 2023, 62, e202308800. https://doi.org/10.1002/anie.202308800.
  74. Zhu, Y.; Chen, Y.; Feng, Y.; Meng, X.; Xia, J.; Zhang, G. Constructing Ru‐O‐TM Bridge in NiFe‐LDH Enables High Current Hydrazine‐assisted H2 Production. Adv. Mater. 2024, 36, 2401694. https://doi.org/10.1002/adma.202401694.
  75. Rollinson, A.N.; Jones, J.; Dupont, V.; Twigg, M.V. Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply. Environ. Sci. 2011, 4, 1216. https://doi.org/10.1039/c0ee00705f.
  76. Dong, H.; Laguna, C.M.; Liu, M.J.; Guo, J.; Tarpeh, W.A. Electrified Ion Exchange Enabled by Water Dissociation in Bipolar Membranes for Nitrogen Recovery from Source-Separated Urine. Environ. Sci. Technol. 2022, 56, 16134–16143. https://doi.org/10.1021/acs.est.2c03771.
  77. Urbańczyk, E.; Sowa, M.; Simka, W. Urea removal from aqueous solutions—a review. J. Appl. Electrochem. 2016, 46, 1011–1029. https://doi.org/10.1007/s10800-016-0993-6.
  78. Zhang, X.; Feizpoor, S.; Humayun, M.; Wang, C. Urea oxidation reaction electrocatalysts: Correlation of structure, activity, and selectivity. Chem Catal. 2024, 4, 100840. https://doi.org/10.1016/j.checat.2023.100840.
  79. Zhao, H.; Zhang, Y.; Xie, C.; Wang, J.; Zhou, T.; Zhou, C.; Li, J.; Bai, J.; Zhu, X.; Zhou, B. Facile, Controllable and Ultrathin NiFe-LDH In Situ Grown on a Ni Foam by Ultrasonic Self-Etching for Highly Efficient Urine Conversion. Environ. Sci. Technol. 2023, 57, 2939–2948. https://doi.org/10.1021/acs.est.2c07282.
  80. Cai, M.; Zhu, Q.; Wang, X.; Shao, Z.; Yao, L.; Zeng, H.; Wu, X.; Chen, J.; Huang, K.; Feng, S. Formation and Stabilization of NiOOH by Introducing α‐FeOOH in LDH: Composite Electrocatalyst for Oxygen Evolution and Urea Oxidation Reactions. Adv. Mater. 2023, 35, 2209338. https://doi.org/10.1002/adma.202209338.
  81. Liao, Y.; Chen, Y.; Li, L.; Luo, S.; Qing, Y.; Tian, C.; Xu, H.; Zhang, J.; Wu, Y. Ultrafine Homologous Ni2P–Co2P Heterostructures via Space‐Confined Topological Transformation for Superior Urea Electrolysis. Adv. Funct. Mater. 2023, 33, 2303300. https://doi.org/10.1002/adfm.202303300.
  82. Zubair, M.; Usov, P.M.; Ohtsu, H.; Yuwono, J.A.; Gerke, C.S.; Foley, G.D.Y.; Hackbarth, H.; Webster, R.F.; Yang, Y.; Lie, W.H.; et al. Vacancy Mediated Electrooxidation of 5‐Hydroxymethyl Furfuryl Using Defect Engineered Layered Double Hydroxide Electrocatalysts. Adv. Energy Mater. 2024, 14, 2400676. https://doi.org/10.1002/aenm.202400676.
  83. Yu, H.; Zhu, S.; Hao, Y.; Chang, Y.M.; Li, L.; Ma, J.; Chen, H.Y.; Shao, M.; Peng, S. Modulating Local Interfacial Bonding Environment of Heterostructures for Energy‐Saving Hydrogen Production at High Current Densities. Adv. Funct. Mater. 2023, 33, 2212811. https://doi.org/10.1002/adfm.202212811.
  84. Wang, T.; Wang, P.; Zang, W.; Li, X.; Chen, D.; Kou, Z.; Mu, S.; Wang, J. Nanoframes of Co3O4–Mo2N Heterointerfaces Enable High‐Performance Bifunctionality toward Both Electrocatalytic HER and OER. Adv. Funct. Mater. 2021, 32, 2107382. https://doi.org/10.1002/adfm.202107382.
  85. Wang, Y.; Chen, D.; Zhang, J.; Balogun, M.S.; Wang, P.; Tong, Y.; Huang, Y. Charge Relays via Dual Carbon‐Actions on Nanostructured BiVO4 for High Performance Photoelectrochemical Water Splitting. Adv. Funct. Mater. 2022, 32, 2112738. https://doi.org/10.1002/adfm.202112738.
  86. Gao, X.; Li, X.; Yu, Y.; Kou, Z.; Wang, P.; Liu, X.; Zhang, J.; He, J.; Mu, S.; Wang, J. Synergizing aliovalent doping and interface in heterostructured NiV nitride@oxyhydroxide core-shell nanosheet arrays enables efficient oxygen evolution. Nano Energy 2021, 85, 105961. https://doi.org/10.1016/j.nanoen.2021.105961.
  87. Pei, Y.; Li, D.; Qiu, C.; Yan, L.; Li, Z.; Yu, Z.; Fang, W.; Lu, Y.; Zhang, B. High‐Entropy Sulfide Catalyst Boosts Energy‐Saving Electrochemical Sulfion Upgrading to Thiosulfate Coupled with Hydrogen Production. Angew. Chem. Int. Ed. 2024, 63, e202411977. https://doi.org/10.1002/anie.202411977.