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S1. Experimental Section

S1.1 Calculation of the Contribution of Active Species

The contribution of each ROS species is calculated by Equations (1)—(3) and the first-order Reaction rate
constant:
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where R is the contribution of reaction species without quenching agent to the Reaction rate constant K of the
reaction, K; is the Reaction rate constant of the first order kinetic reaction of 10,, 0,7, OH in the presence of L-
His, BQ, and IPA.

S1.2 DFT calculation

The electronic structural properties of the surface of P-FeS; and M-FeS; are calculated using the CASTEP
package in Material Studio [1]. The surface is geometrically optimized to relax the surface. For geometrical
optimization, a (2 <2) mesh and the (111) planes on P-FeS; and (110) planes on M-FeS; with a fractional thickness
of 0.5 including 2 Fe layers with a 15 A vacuum gap are employed as the model surface. The ultrasoft
pseudopotential is used for DFT calculations, and the cut-off energy is set to 380 eV. The Brillouin zone is
integrated using a (2 <2 x2) k-points mesh. The exchange correlation energy is determined by generalized gradient
approximation (GGA) and PBE function. The convergence criteria for energy, force, stress, and displacement are
setas 5 %1075 eV/atom, 0.1 eV/A, 0.2 GPa, and 0.005 A, respectively.

The adsorption energy is calculated based on the optimized (111) surface of P-FeS; and (110) surface of M-
FeS,. The adsorption energies (Eads) of the adsorbed H,O, and H,O on the given exposed FeS, surface are
calculated by the following equation:

Ead: Eads/sub - (Eads + Esub ) (4)

where Eads, Esub and Eadsisun represent the total energy of the free adsorbate (H20 or H20,), the relaxed P-FeS, (111)
and M-FeS; (110) surface, and the relaxed surface covered with the adsorbate, respectively. According to the
formula, more negative adsorption energy means stronger interaction between the substrate and the adsorbate.
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S2. Figures and Tables

Table S1. The crystal phase ratio of P/M-FeSz and M/P-FeS..

Mass Weight ®/wt % P-FeS; M-FeS;
P/M-FeS, 63.9% 36.1%
M/P-FeS, 32.3% 67.7%

2 The weight percentage of P-FeSz and M-FeS; in P/M-FeS; and M/P-FeS; is obtained by whole pattern fitting in XRD.
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Figure S1. (a) P/M-FeS2 synthesized from different iron sources. (b) P/M-FeS2 synthesized from different sulfur

sources.
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Figure S2. (a) N2 adsorption/desorption isotherms (up) at 196 <C for P-FeS;, M-FeSzand P/M-FeS: and (b) Pore
size distribution (down) on P-FeSz, M-FeSzand P/M-FeS;. (c) UV-Vis DRS spectra of P-FeS;, M-FeSzand P/M-
FeSz.
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Figure S3. TEM images of (a) P-FeSz and (b) M-FeS.. Inset is the HRTEM image for the concurrent phase.
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Figure S4. (a) Degradation curves of CIP with various crystal-phased FeS2 catalysts. (b) Degradation rate constants
of photo-Fenton degradation with various phased FeS: catalysts. (c) The TOC removal with various crystal-phased
FeS:2 catalysts. (b) TOC removal rate constants with various phased FeS; catalysts.

Table S2. Comparison of photo-Fenton CIP degradation performance of P/M-FeS: with typical reported iron-based

catalysts.
No. Catalyst Photo-Fenton performance Ref.
— in—1
1 PIM-FeS, 50 ppm CIP, cat. 0.2 g/L, K = 1.42 min™*, Xe lamp, This work
Full-spectrum
_ in—1
2 L aFeOs/Diatomite 20 ppm CIP, cat. 0.3 g/L, K =0.0187 min™, Xe lamp, 2
Full-spectrum
3 g—C3N4/NiCo204/ 50 ppm CIP, cat. 0.05 g/L, K = 0.0085 min%, 500 W 3
Zno3Fe2 704 tungsten lamp, A > 400 nm
— in1
4 Fe-TCPP 14.5 ppm CIP, cat. 0.01 g /L, K=0.0436 min™*, Xe 4
lamp, A > 400 nm
20 ppm CIP, cat. 0.15 g/L, K =0.032 min%, UV lamp,
5 Zr02@F8304/\NPC 185 nm < A < 254 nm 5
10 ppm CIP, cat. 1 g/L, K =0.1163 min%, Xe lamp,
6 m-PyC/FeQCl 200 AM > A>400 nm 6
i 30 ppm CIP, cat. 0.4 g/L, 500 W tungsten halogen
! o-(Fe, CU)OOH/RGO lamp, K = 0.0056 min?, 420 nm < A <800 nm !
) . i 10 ppm CIP, cat. 0.63 g/L, K = 0.01645 min™?, Xe
8 Fe-MOF@BIiOBr/M-CN lamp, 4 > 420 nm 8
. N 10 ppm CIP, cat. 0.2 g/L, K = 0.0108 min~%, Xe lamp,
9 BiVO4/NH,-MIL-53(Fe) 3> 420 nm 9
— in—1
10 Fe-HQLC/TiO, 50 ppm CIP, cat. 1 g/L,4Iéo—r?r.nlS? min~, Xe lamp, A > 10
i 15 ppm CIP, cat.0.5 g/L, K = 0.009 min™?,
11 Fe/N-CQDs/MCN1 Xe lamp, > 420 nm 11
10 ppm CIP, cat. 0.5 g/L, K = 0.0054 min™%, Xe lamp,
12 ZnFe,04/Fe;03 AM 15G 12
= in?
13 9-CoNu/Fes04@Fe -MIL-100 200 ppm CIP, cat. 0.67 g/L, K = 0.0656 min™*, Xe 13

lamp, A> 420 nm
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Figure S5. XRD (a) and Raman (b) of the prepared of M/P-FeS..

600

Table S3. The initial rate constant Kaiachior (Min™), BET surface area (m? g %), and the normalized initial rate
constant with BET surface areas Kalachior, surt (g min~t m2) of the samples.

Sample Kalachior (Min~") BET Surface Area (m* g%) Katachior, surf (g Min~* m2)
P-FeS; 0.04 5.059 0.007
M-FeS; 0.31 5.215 0.059
P/M-FeS, 1.67 1.853 0.901
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Figure S6. The Mott-Schottky plots and Tauc plots of the prepared FeS:: (a,d) P/M-FeSz; (b,e) P-FeSz; (c,f) M-

FeS

2.

The slope of the MS curves of the three types of FeS; are positive, which indicates that the three types of FeS;
are n-type semiconductors. The flat-band potential (Ew) of P/M-FeS,, P-FeS; and M-FeS; obtained from the x
intercepts of the linear region in MS plots (Fig. S6) were found to be -0.45, -0.51 and -0.42 V (vs. Ag/AgCl),
namely -0.30, -0.21, 0.00 V (vs. NHE), respectively. The band edge positions of the three kinds of FeS; can be
calculated using the following equation:

Ecs(V vs.NHE) = Ep,, (V vs. %) +021-X
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Where Evs and Ecg stand for the valence band edge potential and conduction band edge potential, respectively;
Eagagei=0.210V vs. NHE; X is the voltage difference between the conduction band value and the flat potential
value, generally 0.1-0.2 eV (the conduction bands of n-type semiconductors are normally 0.1-0.2 eV deeper than
the flat-band potential), which is set as 0.1 eV in this work. the Ecg of P/M-FeS;, P-FeS;and M-FeS; are -0.34, -
0.40 and -0.31 V (vs. NHE), respectively; Eg4 obtained by Tauc plots. (Fig. S6) the Eveg are 2.68, 1.41 and 3.29 V
(vs. NHE), respectively. The results show that Ecg of P/M-FeS,, P-FeS,and M-FeS; are -0.34, -0.40 and -0.31 V
(vs. NHE), respectively; the Evg are 2.68, 1.41 and 3.29 V (vs. NHE), respectively.
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Figure S7. Transient photocurrent and EIS spectra of P/M-FeSz, P-FeS2 and M-FeS:.
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Figure S8. (a) XRD and (b) SEM of the Commercially purchased natural FeS:. (c) Photo-Fenton Degradation of
CIP with Commercial-FeS2, and P/M-FeS..
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Figure S9. Fenton degradation of CIP with different dosages of P/M-FeS; catalyst (a), H202 (b), and different initial
pH (©).
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Figure S10. (a) Degradation rate constants for different pollutants in the P/M-FeS; photo-Fenton system. (b) Linear
fitting of degradation curves with the concurrent pollutants.
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Figure S11. XRD (a), Raman (b), SEM (c) and FTIR (d) of P/M-FeS: before and after the reaction.
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Figure S12. CIP degradation for 4 cycles with P-FeS..
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Figure S13. CIP degradation for 3 cycles with M-FeS..

(a) (b)
- 5 —]
.C Sont SO ;
E 1.5 — 44 Control
:; Cl
o GD 3 HCO;
E 10- ) 6 5042-
.5 € 2. NO5
- 1
S 05
© 1
-
[e)]
Q
Qoo 04 . .
_ _ 0 1 2 3
Various anions Reaction time / min

Figure S14. k values for the CIP degradation in the P/M-FeSz photo-Fenton system with the addition of 5 mM
different anions (a) and linear fitting of the concurrent degradation curves (b).
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Figure S15. k values for the CIP degradation in the P/M-FeS2 photo-Fenton system with the addition of 5 mM
different cations (a) and linear fitting of the concurrent degradation curves (b).
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Figure S16. k values for the CIP degradation in the P/M-FeSz photo-Fenton system with the addition of different
concentrations of HA (a) and linear fitting of the concurrent degradation curves (b).
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Figure S17. k values for the CIP degradation in the P/M-FeS2 photo-Fenton system with the different sources of
water (@) and linear fitting of the concurrent degradation curves (b).
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Figure S18. EPR signals of the M/P-FeS; in dark and with light irradiation and H202 addition. 5,5-Dimethyl—1-
pyrroline-N-oxide (DMPO) as the spin-trapping reagent of *OH.
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Figure S19. CIP degradation in the P/M-FeS; photo-Fenton system with and without K1 addition as a h* trapping
reagent.
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Figure S20. *OH radicals generated in the P-FeSz and H20 system under Xe lamp with Ar purging.

The *OH radicals is measured as follows: 10 mg P-FeS; is added into a round-bottomed flask containing 50
ml H,O, and then 1 mM coumarin solution is added therein. The flask is lined with the Schlenk-line. The system
is evacuated and filled with Ar for 3 times and then the reaction starts. The concentration of *OH radicals is
determined by fluorescence method as reported with the excitation wavelength of 350 nm and emission wavelength
of 450 nm.** 7-hydroxycoumarin is measured to determine the *OH concentration with a production yield of 6.1%
from coumarin and *OH.

Table S4. Fe:S ratios in P-FeS2 and P-FeS: before and after the reaction.

P-FeS M-FeS>
Content/at% Fe S Fe:S Fe S Fe:S
Before reaction 1.73 47.7 1:27.6 3.40 35.7 1:10.5
After reaction 1.74 28.9 1:16.6 0.67 30.5 1:45.5

Table S5. The number of Fe and S atoms in surface model for P-FeS2 and M-FeS.

Fe S Fe:S
P-FeS, 21 64 1:3
M-FeS; 16 32 1:2
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Figure S22. Surface potential difference between the pyrite and marcasite region in P/M-FeS; measure by KPFM.
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