Downloads

Younis, O., Xiao, X., Yang, J., Aly, K. I., Bakhite, E. A., & Yang, X. Advancements in Luminescent Metal-Organic Cages: Applications and Future Prospects. Science for Energy and Environment. 2024. doi: https://doi.org/10.53941/see.2024.100008

Review

Advancements in Luminescent Metal-Organic Cages: Applications and Future Prospects

Osama Younis 1,2,*, Xiangyun Xiao 1, Jianxun Yang 3, Kamal I. Aly 4, Etify A. Bakhite 4, and Xinchun Yang 1,*

1 Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China

2 Chemistry Department, Faculty of Science, New Valley University, El-Kharga 72511, Egypt

3 Three Gorges Daofu Renewables Co., Ltd. Ganzi 626700, China 

4 Chemistry Department, Faculty of Science, Assiut University, Asyut 71516, Egypt

* Correspondence: osamayounis@sci.nvu.edu.eg (O.Y.); xc.yang@siat.ac.cn or yang.xinchun@hotmail.com (X.Y.)

Received: 19 September 2024; Revised: 12 October 2024; Accepted: 25 October 2024; Published: 1 November 2024

Abstract: Researchers worldwide are developing innovative luminescent systems with exceptional features like high sensitivity. Luminescent frameworks based on aggregation-induced emission (AIE) have emerged as promising candidates for various applications. Over the past decade, porous materials like metal-organic cages (MOCs) incorporating AIE luminogens (AIEgens) have demonstrated exceptional performance. Chirality plays a significant role in specific non-racemic luminescent systems, particularly circularly polarized luminescence (CPL). Chiral organic materials coordinated with metals, including MOCs, have gained importance as they combine organic ligands and coordination-bonded metal centers, enabling the design of novel structures with CPL. These materials have shown exciting potential applications in fields like CPL-OLED, chiral recognition, and sensing. This review article provides an overview of the recent progress in emissive porous materials, specifically MOCs, and their possible applications. Additionally, the review focuses on the recent progress in AIEgen-based cages, CPL-active cages, and non-AIEgen-based cages, their practical applications in sensing and enantioselectivity, and future prospects. Key challenges in AIE-based POCs and MOCs include limited stability, affecting their use in wide-surface thin films, and the need to understand molecular structure and topology impacts. Future efforts should enhance luminescence efficiency and explore applications in chiral sensing, supramolecular assemblies, bioimaging, and optoelectronics, driving innovation in smart materials.

Keywords:

uminescence metal-organic cages porous AIE luminogens sensing enantioselectivity

References

  1. Yang, Z.; Cao, J.; He, Y.; Yang, J.H.; Kim, T.; Peng, X.; Kim, J.S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563–4601.
  2. Stender, A.S.; Marchuk, K.; Liu, C.; Sander, S.; Meyer, M.W.; Smith, E.A.; Neupane, B.; Wang, G.; Li, J.; Cheng, J.-X.; et al. Single Cell Optical Imaging and Spectroscopy. Chem. Rev. 2013, 113, 2469–2527.
  3. Yang, S.K.; Shi, X.; Park, S.; Ha, T.; Zimmerman, S.C. A dendritic single-molecule fluorescent probe that is monovalent, photostable and minimally blinking. Nat. Chem. 2013, 5, 692–697.
  4. Zhu, M.; Yang, C. Blue fluorescent emitters: Design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 2013, 42, 4963–4976.
  5. Maggini, L.; Bonifazi, D. Hierarchised luminescent organic architectures: Design, synthesis, self-assembly, self-organisation and functions. Chem. Soc. Rev. 2012, 41, 211–241.
  6. Ma, L.; Feng, X.; Wang, S.; Wang, B. Recent advances in AIEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Mater. Chem. Front. 2017, 1, 2474–2486.
  7. Herwig, L.; Rice, A.J.; Bedbrook, C.N.; Zhang, R.K.; Lignell, A.; Cahn, J.K.B.; Renata, H.; Dodani, S.C.; Cho, I.; Cai, L.; et al. Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore. Cell Chem. Biol. 2017, 24, 415–425.
  8. Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940.
  9. Aly, K.I.; Younis, O.; Mahross, M.H.; Orabi, E.A.; Abdel-Hakim, M.; Tsutsumi, O.; Mohamed, M.G.; Sayed, M.M. Conducting copolymers nanocomposite coatings with aggregation-controlled luminescence and efficient corrosion inhibition properties. Progress. Org. Coat. 2019, 135, 525–535.
  10. Sayed, M.; Younis, O.; Hassanien, R.; Ahmed, M.; Mohammed, A.A.K.; Kamal, A.M.; Tsutsumi, O. Design and Synthesis of Novel Indole Derivatives with Aggregation-Induced Emission and Antimicrobial Activity. J. Photochem. Photobiol. A: Chem. 2019, 383, 111969–111979.
  11. Younis, O.; Orabi, E.A.; Kamal, A.M.; Sayed, M.; Hassanien, R.; Davis, R.L.; Tsutsumi, O.; Ahmed, M. Aggregation-induced emission with white, green, or blue luminescence from biologically-active indole derivatives. Opt. Mater. 2020, 100, 109713.
  12. Younis, O.; Tolba, M.S.; Orabi, E.A.; Kamal, A.M.; Hassanien, R.; Tsutsumi, O.; Ahmed, M. Biologically-Active Heterocyclic Molecules with Aggregation-Induced Blue-Shifted Emission and Efficient Luminescence both in Solution and Solid States. J. Photochem. Photobiol. A Chem. 2020, 400, 112642.
  13. Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388.
  14. Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353. https://doi.org/10.1039/B904665H(2009).
  15. Asad, M.; Anwar, M.I.; Abbas, A.; Younas, A.; Hussain, S.; Gao, R.; Li, L.-K.; Shahid, M.; Khan, S. AIE based luminescent porous materials as cutting-edge tool for environmental monitoring: State of the art advances and perspectives. Coord. Chem. Rev. 2022, 463, 214539.
  16. Castilla, A.M.; Ramsay, W.J.; Nitschke, J.R. Stereochemistry in Subcomponent Self-Assembly. Acc. Chem. Res. 2014, 47, 2063–2073.
  17. Custelcean, R. Anion encapsulation and dynamics in self-assembled coordination cages. Chem. Soc. Rev. 2014, 43, 1813–1824.
  18. Amouri, H.; Desmarets, C.; Moussa, J. Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration. Chem. Rev. 2012, 112, 2015–2041.
  19. Yoshizawa, M.; Tamura, M.; Fujita, M. Diels-Alder in Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. Science 2006, 312, 251–254.
  20. Zhu, C.-Y.; Pan, M.; Su, C.-Y. Metal-Organic Cages for Biomedical Applications. Isr. J. Chem. 2019, 59, 209–219.
  21. Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal–organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.
  22. Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.
  23. Longhi, G.; Castiglioni, E.; Koshoubu, J.; Mazzeo, G.; Abbate, S. Circularly Polarized Luminescence: A Review of Experimental and Theoretical Aspects. Chirality 2016, 28, 696–707.
  24. Ikeda, T.; Masuda, T.; Hirao, T.; Yuasa, J.; Tsumatori, H.; Kawai, T.; Haino, T. Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety. Chem. Commun. 2012, 48, 6025–6027.
  25. Carr, R.; Evans, N.H.; Parker, D. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence. Chem. Soc. Rev. 2012, 41, 7673–7686.
  26. Xu, Y.; Yang, G.; Xia, H.; Zou, G.; Zhang, Q.; Gao, J. Enantioselective synthesis of helical polydiacetylene by application of linearly polarized light and magnetic field. Nat. Commun. 2014, 5, 5050.
  27. Kim, J.; Lee, J.; Kim, W.Y.; Kim, H.; Lee, S.; Lee, H.C.; Lee, Y.S.; Seo, M.; Kim, S.Y. Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. Nat. Commun. 2015, 6, 6959.
  28. David, A.H.G.; Casares, R.; Cuerva, J.M.; Campaña, A.G.; Blanco, V. A [2]Rotaxane-Based Circularly Polarized Luminescence Switch. J. Am. Chem. Soc. 2019, 141, 18064–18074.
  29. Tanaka, H.; Inoue, Y.; Mori, T. Circularly Polarized Luminescence and Circular Dichroisms in Small Organic Molecules: Correlation between Excitation and Emission Dissymmetry Factors. ChemPhotoChem 2018, 2, 386–402.
  30. He, C.; Yang, G.; Kuai, Y.; Shan, S.; Yang, L.; Hu, J.; Zhang, D.; Zhang, Q.; Zou, G. Dissymmetry enhancement in enantioselective synthesis of helical polydiacetylene by application of superchiral light. Nat. Commun. 2018, 9, 5117.
  31. Tang, X.; Jiang, H.; Si, Y.; Rampal, N.; Gong, W.; Cheng, C.; Kang, X.; Fairen-Jimenez, D.; Cui, Y.; Liu, Y. Endohedral functionalization of chiral metal-organic cages for encapsulating achiral dyes to induce circularly polarized luminescence. Chem 2021, 7, 2771–2786.
  32. Li, R.-J.; Holstein, J.J.; Hiller, W.G.; Andréasson, J.; Clever, G.H. Mechanistic Interplay between Light Switching and Guest Binding in Photochromic [Pd2Dithienylethene4] Coordination Cages. J. Am. Chem. Soc. 2019, 141, 2097–2103.
  33. Luo, X.-Y.; Pan, M. Metal-organic materials with circularly polarized luminescence. Coord. Chem. Rev. 2022, 468, 214640.
  34. Chen, G.-H.; He, Y.-P.; Yu, Y.; Li, Q.-H.; Zhang, J. Homochiral design of titanium-organic cage for circularly polarized luminescence-based molecular detection. Sci. China Chem. 2023, 66, 2558–2562.
  35. Yu, S.; Yan, W.; Long, W.; Yuan, Y.; Ouyang, H.; He, Z.; Tian, J.; Liu, M.; Zhang, X.; Wei, Y. A facile strategy to fabricate fluorescent polymeric nanoparticles with aggregation-induced emission feature via oxygen-tolerated light-induced living polymerization. Dye. Pigment. 2021, 192, 109454.
  36. Chen, G.-H.; He, Y.-P.; Yu, Y.; Lv, H.; Li, S.; Wang, F.; Gu, Z.-G.; Zhang, J. Post-Assembly Modification of Homochiral Titanium–Organic Cages for Recognition and Separation of Molecular Isomers. Angew. Chem. Int. Ed. 2023, 62, e202300726.
  37. McTernan, C.T.; Ronson, T.K.; Nitschke, J.R. Post-assembly Modification of Phosphine Cages Controls Host–Guest Behavior. J. Am. Chem. Soc. 2019, 141, 6837–6842.
  38. Briggs, M.E.; Cooper, A.I. A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages. Chem. Mater. 2017, 29, 149–157.
  39. Pilgrim, B.S.; Champness, N.R. Metal-Organic Frameworks and Metal-Organic Cages—A Perspective. Chempluschem 2020, 85, 1842–1856.
  40. Zhu, Q.; Qu, H.; Avci, G.; Hafizi, R.; Zhao, C.; Day, G.M.; Jelfs, K.E.; Little, M.A.; Cooper, A.I. Computationally guided synthesis of a hierarchical [4[2+3]+6] porous organic ‘cage of cages’. Nat. Synth. 2024, 3, 825–834.
  41. Jia, L.; Tang, X.; Cui, Y.; Liu, Y. Porous metal-organic cage-based membranes. Sci. China Chem. 2023, 66, 2169–2180.
  42. Qin, Y.; Ling, Q.-H.; Wang, Y.-T.; Hu, Y.-X.; Hu, L.; Zhao, X.; Wang, D.; Yang, H.-B.; Xu, L.; Tang, B.Z. Construction of Covalent Organic Cages with Aggregation-Induced Emission Characteristics from Metallacages for Mimicking Light-Harvesting Antenna. Angew. Chem. Int. Ed. 2023, 62, e202308210.
  43. Zhang, X.; Shi, J.; Shen, G.; Gou, F.; Cheng, J.; Zhou, X.; Xiang, H. Non-conjugated fluorescent molecular cages of salicylaldehyde-based tri-Schiff bases: AIE, enantiomers, mechanochromism, anion hosts/probes, and cell imaging properties. Mater. Chem. Front. 2017, 1, 1041–1050.
  44. Sun, Y.-L.; Wang, Z.; Ren, C.; Zhang, J.; Zhang, H.; Zhang, C.; Tang, B.Z. Highly Emissive Organic Cage in Single-Molecule and Aggregate States by Anchoring Multiple Aggregation-Caused Quenching Dyes. ACS Appl. Mater. Interfaces 2022, 14, 53567–53574.
  45. Zou, D.; Li, Z.; Long, D.; Dong, X.; Qu, H.; Yang, L.; Cao, X. Molecular Cage with Dual Outputs of Photochromism and Luminescence Both in Solution and the Solid State. ACS Appl. Mater. Interfaces 2023, 15, 13545–13553.
  46. Zhao, J.; Zhou, Z.; Li, G.; Stang, P.J.; Yan, X. Light-emitting self-assembled metallacages. Natl. Sci. Rev. 2021, 8, nwab045.
  47. Yan, X.; Cook, T.R.; Wang, P.; Huang, F.; Stang, P.J. Highly emissive platinum(II) metallacages. Nat. Chem. 2015, 7, 342–348.
  48. Yan, X.; Wang, M.; Cook, T.R.; Zhang, M.; Saha, M.L.; Zhou, Z.; Li, X.; Huang, F.; Stang, P.J. Light-Emitting Superstructures with Anion Effect: Coordination-Driven Self-Assembly of Pure Tetraphenylethylene Metallacycles and Metallacages. J. Am. Chem. Soc. 2016, 138, 4580–4588.
  49. XYan; Wei, P.; Liu, Y.; Wang, M.; Chen, C.; Zhao, J.; Li, G.; Saha, M.L.; Zhou, Z.; An, Z.; Li, X.; et al. Endo- and Exo-Functionalized Tetraphenylethylene M12L24 Nanospheres: Fluorescence Emission inside a Confined Space. J. Am. Chem. Soc. 2019, 141, 9673–9679.
  50. Li, H.; Xie, T.-Z.; Liang, Z.; Dahal, D.; Shen, Y.; Sun, X.; Yang, Y.; Pang, Y.; Liu, T. Conformational change due to intramolecular hydrophobic interaction leads to large blue-shifted emission from single molecular cage solutions. Chem. Commun. 2019, 55, 330–333.
  51. Zhang, M.; Saha, M.L.; Wang, M.; Zhou, Z.; Song, B.; Lu, C.; Yan, X.; Li, X.; Huang, F.; Yin, S.; et al. Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. J. Am. Chem. Soc. 2017, 139, 5067–5074.
  52. Zhou, Z.; Yan, X.; Saha, M.L.; Zhang, M.; Wang, M.; Li, X.; Stang, P.J. Immobilizing Tetraphenylethylene into Fused Metallacycles: Shape Effects on Fluorescence Emission. J. Am. Chem. Soc. 2016, 138, 13131–13134.
  53. Li, M.; Jiang, S.; Zhang, Z.; Hao, X.-Q.; Jiang, X.; Yu, H.; Wang, P.; Xu, B.; Wang, M.; Tian, W. Tetraphenylethylene-Based Emissive Supramolecular Metallacages Assembled by Terpyridine Ligands. CCS Chem. 2020, 2, 337–348.
  54. Sun, N.; Qi, D.; Jin, Y.; Wang, H.; Wang, C.; Qu, C.; Liu, J.; Jin, Y.; Zhang, W.; Jiang, J. Porous Pyrene Organic Cage with Unusual Absorption Bathochromic-Shift Enables Visible Light Photocatalysis. CCS Chem. 2021, 4, 2588–2596.
  55. Song, H.; Guo, Y.; Zhang, G.; Shi, L. Tailored Water-Soluble Covalent Organic Cages for Encapsulation of Pyrene and Information Encryption. International Journal of Molecular Sciences, 2023.
  56. Luis, E.T.; Iranmanesh, H.; Arachchige, K.S.A.; Donald, W.A.; Quach, G.; Moore, E.G.; Beves, J.E. Luminescent Tetrahedral Molecular Cages Containing Ruthenium(II) Chromophores. Inorg. Chem. 2018, 57, 8476–8486.
  57. Martir, D.R.; Pizzolante, A.; Escudero, D.; Jacquemin, D.; Warriner, S.L.; Zysman-Colman, E. Photoinduced Energy and Electron Transfer Between a Photoactive Cage Based on a Thermally Activate Delayed Fluorescence Ligand and Encapsulated Fluorescent Dyes. ACS Appl. Energy Mater. 2018, 1, 2971–2978.
  58. Elliott, A.B.S.; Lewis, J.E.M.; van der Salm, H.; McAdam, C.J.; Crowley, J.D.; Gordon, K.C. Luminescent Cages: Pendant Emissive Units on [Pd2L4]4+ “Click” Cages. Inorg. Chem. 2016, 55, 3440–3447.
  59. Luo, D.; Li, M.; Zhou, X.-P.; Li, D. Boosting Luminescence of Planar-Fluorophore-Tagged Metal–Organic Cages Via Weak Supramolecular Interactions. Chem. A Eur. J. 2018, 24, 7108–7113.
  60. El-Sayed, E.-S.M.; Yuan, D. Metal-Organic Cages (MOCs): From Discrete to Cage-based Extended Architectures. Chem. Lett. 2020, 49, 28–53.
  61. Zarra, S.; Wood, D.M.; Roberts, D.A.; Nitschke, J.R. Molecular containers in complex chemical systems. Chem. Soc. Rev. 2015, 44, 419–432.
  62. Wang, X.-Z.; Sun, M.-Y.; Huang, Z.; Xie, M.; Huang, R.; Lu, H.; Zhao, Z.; Zhou, X.-P.; Li, D. Turn-On Circularly Polarized Luminescence in Metal–Organic Frameworks. Adv. Opt. Mater. 2021, 9, 2002096.
  63. Zhou, Y.; Li, H.; Zhu, T.; Gao, T.; Yan, P. A Highly Luminescent Chiral Tetrahedral Eu4L4(L′)4 Cage: Chirality Induction, Chirality Memory, and Circularly Polarized Luminescence. J. Am. Chem. Soc. 2019, 141, 19634–19643.
  64. Chen, H.; Gu, Z.-G.; Zhang, J. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chem. Sci. 2021, 12, 12346–12352.
  65. Ding, Y.; Shen, C.; Gan, F.; Wang, J.; Zhang, G.; Li, L.; Shu, M.; Zhu, B.; Crassous, J.; Qiu, H. Tunable construction of transition metal-coordinated helicene cages. Chin. Chem. Lett. 2021, 32, 3988–3992.
  66. Li, C.; Liu, Y.; Wang, Y.; Guo, J.; Pan, M. Assembly and properties of Pd4Ru8 metal-organic cages based on polypyridine Ru (II)-metalloligand. Sci. Sin. Chim. 2020, 50, 687–694.
  67. Zhang, Z.; Zhao, Z.; Wu, L.; Lu, S.; Ling, S.; Li, G.; Xu, L.; Ma, L.; Hou, Y.; Wang, X.; et al. Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing. J. Am. Chem. Soc. 2020, 142, 2592–2600.
  68. Li, C.; Zhang, B.; Dong, Y.; Li, Y.; Wang, P.; Yu, Y.; Cheng, L.; Cao, L. A tetraphenylethene-based Pd2L4 metallacage with aggregation-induced emission and stimuli-responsive behavior. Dalton Trans. 2020, 49, 8051–8055.
  69. Meng, Z.; Yang, F.; Wang, X.; Shan, W.-L.; Liu, D.; Zhang, L.; Yuan, G. Trefoil-Shaped Metal–Organic Cages as Fluorescent Chemosensors for Multiple Detection of Fe3+ , Cr2O72–, and Antibiotics. Inorg. Chem. 2023, 62, 1297–1305.
  70. Gao, Z.; Jia, J.; Fan, W.; Liao, T.; Zhang, X. Zirconium metal organic cages: From phosphate selective sensing to derivate forming. Chin. Chem. Lett. 2022, 33, 4415–4420.
  71. Dai, C.; Gu, B.; Tang, S.-P.; Deng, P.-H.; Liu, B. Fluorescent porous organic cage with good water solubility for ratiometric sensing of gold(III) ion in aqueous solution. Anal. Chim. Acta 2022, 1192, 339376.
  72. Sun, Y.-L.; Wang, Z.; Ma, H.; Zhang, Q.-P.; Yang, B.-B.; Meng, X.; Zhang, Y.; Zhang, C. Chiral emissive porous organic cages. Chem. Commun. 2023, 59, 302–305.
  73. Liu, Y.; Jia, J.; Liao, T.; Luo, J.; Zhang, X. Porous organic cage for enantiomeric fluorescence recognition of amino acid and hydroxy acid. Luminescence 2021, 36, 2022–2027.
  74. Li, T.; Pan, Y.; Song, H.; Jiang, H.; Guo, Y.; Shi, L.; Hao, X.; Song, M.-P. Luminescent covalent organic cages with a C3-symmetric structure for effective enantioseparation. New J. Chem. 2023, 47, 22320–22325.
  75. Ghorai, S.; Natarajan, R. Chiral Self-Sorting, Spontaneous Resolution, and Hierarchical Self-Assembly in Metal–Organic Cages. Small 2024, 20, 2400842.
  76. Li, T.; Pan, Y.; Ding, L.; Kang, Y.; Hao, X.-Q.; Guo, Y.; Shi, L. Chiral cage materials with tailored functionalities for enantioselective recognition and separation. Chem. Synth. 2024, 4, 35.
  77. Liu, C.; Li, J.; Lu, M.; Jia, X.; Yu, A.; Zhang, S. Chiral metal-organic cage modified polyvinylidene fluoride membrane via metal phenolic networks for enantioseparation. Sep. Purif. Technol. 2024, 332, 125765.