Downloads
Download
This work is licensed under a Creative Commons Attribution 4.0 International License.
Article
Effects of Cyclic Cryogenic Treatment on Pure Magnesium and the Effect of Nano ZnO Particles Processed Using Microwave Sintering
Poonam Deshmukh 1, Michael Johanes 2, Dan Sathiaraj 1 and Manoj Gupta 2,*
1 Department of Mechanical Engineering, Indian Institute of Technology, Indore 453 552, Madhya Pradesh, India
2 Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117 576, Singapore
* Correspondence: mpegm@nus.edu.sg
Received: 30 August 2024; Revised: 27 November 2024; Accepted: 6 December 2024; Published: 9 December 2024
Abstract: The present study, for the first time, reports the effect of cyclic cryogenic treatment (cyclic CT) on pure magnesium and Mg/2 wt.% ZnO (Mg2ZnO) nanocomposite. Addition of ZnO particles enhanced density of the Mg and nanocomposite material to a maximum of ~30% and ~ 68%, respectively after 2 cycles of CT. Basal plane strengthened after cyclic CT in both materials, irrespective of number of cycles. Addition of ZnO particles showed an enhancement in 0.2 CYS, UCS, fracture strain, and energy absorbed by ~13.88%, ~26%, ~15%, and ~64%, respectively. However, the effect of cyclic CT on pure magnesium was not considerably effective, and properties remained nearly similar to the as-extruded condition. On the contrary, Mg2ZnO composite material showed a maximum enhancement of ~11%, ~5%, ~8% in 0.2 CYS, UCS, and energy absorbed, while the fracture strain remained constant. Though 1 cycle of cryogenic treatment for pure Mg showed slightly better results, the mechanical properties are almost similar for all cycles. Meanwhile, 2 cycles of cryogenic treatment is more effective in realizing superior combination of mechanical properties in the case of nanocomposite.
Keywords:
magnesium alloys magnesium nanocomposite cyclic cryogenic composite compression behaviorReferences
- Wong, W.L.E.; Gupta, M. Development of Mg/Cu Nanocomposites Using Microwave Assisted owder Metallurgy Technique. In Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 5–11 November 2005.
- Gupta, M.; Wong, W.L.E. Magnesium-Based Nanocomposites: Lightweight Materials of the Future. Mater. Charact. 2015, 105, 30–46.
- Tun, K.S.; Jayaramanavar, P.; Nguyen, Q.B.; Chan, J.; Kwok, R.; Gupta, M. Investigation into Tensile and Compressive Responses of Mg-ZnO Composites. Mater. Sci. Technol. 2012, 28, 582–588. https://doi.org/10.1179/1743284711Y.0000000108.
- Ahmad, I.R.; Jing, X.; Shu, D.W. Effect of Temperature on the Mechanical Behaviour of Magnesium Alloy AZ91D in the Range between −30 °C and 250 °C. Int. J. Mech. Sci. 2014, 86, 34–45. https://doi.org/10.1016/j.ijmecsci.2014.04.010.
- Gupta, S.; Parande, G.; Gupta, M. Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.% CeO2 Nanocomposite. Technologies 2024, 12, 14. https://doi.org/10.3390/technologies12020014.
- Hassan, S.F.; Ho, K.F.; Gupta, M. Increasing Elastic Modulus, Strength and CTE of AZ91 by Reinforcing Pure Magnesium with Elemental Copper. Mater. Lett. 2004, 58, 2143–2146. https://doi.org/10.1016/j.matlet.2004.01.011.
- Hassan, S.F.; Gupta, M. Development of Ductile Magnesium Composite Materials Using Titanium as Reinforcement. J. Alloys Compd. 2002, 345, 246–251.
- Kainer, K.U. Magnesium Alloys and Technologies; Wiley-VCH: Hoboken, NJ, USA, 2003; ISBN 352730570X.
- Eugene, W.W.L.; Gupta, M. Enhancing Thermal Stability, Modulus and Ductility of Magnesium Using Molybdenum as Reinforcement. Adv. Eng. Mater. 2005, 7, 250–256. https://doi.org/10.1002/adem.200400137.
- Lloyd, D.J. Particle Reinforced Aluminium and Magnesium Matrix Composites; Int. Mater. Rev. 1994, 39, 1–23.
- Nie, K.B.; Wang, X.J.; Deng, K.K.; Hu, X.S.; Wu, K. Magnesium Matrix Composite Reinforced by Nanoparticles—A Review. J. Magnes. Alloys 2021, 9, 57–77.
- Wong, W.L.E.; Gupta, M. Development of High Performance Mg/SiC Composites Containing Nano-Size SiC Using Microwave Assisted Rapid Sintering. Am. Soc. Mech. Eng. Aerosp. Div. 2005, 70, 511–515. https://doi.org/10.1115/IMECE2005-82501.
- Gupta, S.; Parande, G.; Tun, K.S.; Gupta, M. Enhancing the Physical, Thermal, and Mechanical Responses of a Mg/2wt.%CeO2 Nanocomposite Using Deep Cryogenic Treatment. Metals 2023, 13, 660. https://doi.org/10.3390/met13040660.
- Parande, G.; Manakari, V.; Meenashisundaram, G.K.; Gupta, M. Enhancing the Hardness/Compression/Damping Response of Magnesium by Reinforcing with Biocompatible Silica Nanoparticulates; Int. J. Mater. Res. 2016, 107, 1–9. https://doi.org/10.3139/146.111435.
- Tun, K.S.; Gupta, M. Improving Mechanical Properties of Magnesium Using Nano-Yttria Reinforcement and Microwave Assisted Powder Metallurgy Method. Compos. Sci. Technol. 2007, 67, 2657–2664. https://doi.org/10.1016/j.compscitech.2007.03.006.
- Sankaranarayanan, S.; Pranav Nayak, U.; Sabat, R.K.; Suwas, S.; Almajid, A.; Gupta, M. Nano-ZnO Particle Addition to Monolithic Magnesium for Enhanced Tensile and Compressive Response. J. Alloys Compd. 2014, 615, 211–219. https://doi.org/10.1016/j.jallcom.2014.06.163.
- Kalsi, N.S.; Sehgal, R.; Sharma, V.S. Cryogenic Treatment of Tool Materials: A Review. Mater. Manuf. Process. 2010, 25, 1077–1100.
- Kalia, S. Cryogenic Processing: A Study of Materials at Low Temperatures. J. Low. Temp. Phys. 2010, 158, 934–945. https://doi.org/10.1007/s10909-009-0058-x.
- Dong, N.; Sun, L.; Ma, H.; Jin, P. Effects of Cryogenic Treatment on Microstructures and Mechanical Properties of Mg-2Nd-4Zn Alloy. Mater. Lett. 2021, 305, 130699. https://doi.org/10.1016/j.matlet.2021.130699.
- Jiang, Y.; Chen, D.; Chen, Z.; Liu, J. Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of AZ31 Magnesium Alloy. Mater. Manuf. Process. 2010, 25, 837–841. https://doi.org/10.1080/10426910903496862.
- Huang, H.; Zhang, J. Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Processed by Multi-Directional Forging at Different Temperatures. Mater. Sci. Eng. A 2016, 674, 52–58. https://doi.org/10.1016/j.msea.2016.07.052.
- Sonar, T.; Lomte, S.; Gogte, C. Cryogenic Treatment of Metal-A Review; Mater. Today: Proc. 2018, 5, 5219–25228.
- Pahaul, A.; Johanes, M.; Gupta, M. A First-Time Addition of Selenium to a Mg-Based Metal Matrix Composite for Biomedical Purposes. J. Compos. Sci. 2024, 8, 81. https://doi.org/10.3390/jcs8030081.
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr. 2019, 34, 352–360. https://doi.org/10.1017/S0885715619000812.
- Wan, D.; Hu, Y.; Ye, S.; Li, Z.; Li, L.; Huang, Y. Effect of Alloying Elements on Magnesium Alloy Damping Capacities at Room Temperature. Int. J. Miner. Metall. Mater. 2019, 26, 760–765. https://doi.org/10.1007/s12613-019-1789-6.
- Zhang, J.; Gungor, M.N.; Lavernia, E.J. The Effect of Porosity on the Microstructural Damping Response of 6061 Aluminium Alloy. J. Materials Science, 1993, 28, 1515–1524.
- Li, Q.; Jiang, G.; Dong, J.; Hou, J.; He, G. Damping Behavior and Energy Absorption Capability of Porous Magnesium. J. Alloys Compd. 2016, 680, 522–530.
- Granato, A.; Lücke, K. Theory of Mechanical Damping Due to Dislocations. J. Appl. Phys. 1956, 27, 583–593. https://doi.org/10.1063/1.1722436.
- Advertise with MatWeb! Zinc Oxide, ZnO, (Zincite) Categories: Ceramic; Oxide; 1996. Available online: https://www.vedantu.com/chemistry/zinc-oxide (accessed on 2 July 2024).
- Mirza, F.A.; Chen, D.L. A Unified Model for the Prediction of Yield Strength in Particulate-Reinforced Metal Matrix Nanocomposites. Materials 2015, 8, 5138–5153. https://doi.org/10.3390/ma8085138.
- Radford, D.D.; Willmott, G.R.; Walley, S.M. Failure Mechanism in Ductile and Brittle Materials During Taylor Impact. J. Phys. IV Fr. 2003, 110, 687.
- Chen, Y.; Cao, F.; Deng, C.; Zhang, Y. Effect of compression loading speeds on the room temperature mechanical properties of as-extruded AZ31 magnesium alloy. Phys. Conf. Ser. 2022, 2174, 012065. https://doi.org/10.1088/1742-6596/2174/1/012065.