https://test.sciltp.com/testj/mi/issue/feed Materials and Interfaces 2024-12-23T11:45:27+08:00 Ms. Zora Zhu mi@sciltp.com Open Journal Systems https://test.sciltp.com/testj/mi/article/view/660 Welcome to Materials and Interfaces 2024-12-16T10:05:20+08:00 Younan Xia younan.xia@bme.gatech.edu <p class="categorytitle"><em>Editorial</em></p> <h1>Welcome to <em>Materials and Interfaces</em></h1> <div class="abstract_title"> <p><strong>Younan Xia <sup>1,2</sup></strong></p> </div> <div class="abstract_top"> <p><sup>1 </sup>The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; younan.xia@bme.gatech.edu</p> <p><sup>2 </sup>School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA</p> <p>Received: 16 December 2024; Accepted: 17 December 2024; Published: 20 December 2024</p> </div> 2024-12-20T00:00:00+08:00 Copyright (c) 2024 by the authors. https://test.sciltp.com/testj/mi/article/view/626 On the Surface Compositions of Molybdenum Carbide Nanoparticles for Electrocatalytic Applications 2024-12-06T11:10:40+08:00 Siying Yu siyingy2@illinois.edu Hong Yang hy66@illinois.edu <p class="categorytitle"><em>Perspective</em></p> <h1>On the Surface Compositions of Molybdenum Carbide Nanoparticles for Electrocatalytic Applications</h1> <div class="abstract_title"> <p><strong>Siying Yu <sup><a href="https://orcid.org/0009-0000-1616-5828" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup> and Hong Yang <sup>*,<a href="https://orcid.org/0000-0003-3459-4516" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong></p> </div> <div class="abstract_top"> <p>Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews, Urbana, IL 61801, USA</p> <p>* Correspondence: hy66@illinois.edu</p> <p>Received: 28 November 2024; Accepted: 2 December 2024; Published: 6 December 2024</p> <p> </p> </div> <p><strong id="abstract" class="label">Abstract: </strong>Molybdenum carbide has attracted much research attention for its precious metal-like catalytic properties, especially in hydrogen-involved reactions. It possesses rich crystal and surface structures leading to different activity and product selectivity. With advances in nanoengineering and new understanding of their surfaces and interfaces, one can control the transition between different phases and surface structures for molybdenum carbide nanoparticles. In this context, it is essential to understand their surface compositions and structures under operating conditions in addition to their intrinsic ones under ambient conditions without external cues. The necessity of surface study also comes from the mild oxidation brought by passivation in carbide nanoparticles. made using the bottom-up synthesis or solid-gas phase temperature-programmed reduction. In this perspective, we first introduce the relevant crystal structures of molybdenum carbides and highlight the features of the three types of chemical bonding within. We then briefly review the studies of thermodynamically favored surface components and nanostructures for partially oxidized molybdenum carbide nanoparticles based on both experimental and theoretical data. An electrochemical oxidation method is used to illustrate the feasibility in controlling and understanding the surface oxidation. Finally, structure-property relationship is discussed with several recent examples, focusing on the effect of phase dependency on the adsorption energy of reaction intermediates.</p> <p class="art_imgtitle" style="width: 60%; margin-left: 20%;"><img src="https://www.sciltp.com/journals/public/site/images/yu.xu@sciltp.com/ga-7faf75009d8559d0ad0bdaef128c3948.jpg" alt="" width="638" height="279" /></p> 2024-12-06T00:00:00+08:00 Copyright (c) 2024 by the authors. https://test.sciltp.com/testj/mi/article/view/531 Emerging Piezoelectric Metamaterials for Biomedical Applications 2024-10-14T10:28:40+08:00 Zishuo Yan zyan@unmc.edu Huy Tran huytran@unmc.edu Dezun Ma dma@unmc.edu Jingwei Xie jingwei.xie@unmc.edu <p class="categorytitle"><em>Review</em></p> <h1>Emerging Piezoelectric Metamaterials for Biomedical Applications</h1> <div class="abstract_title"> <p><strong>Zishuo Yan <sup>1,<a href="https://orcid.org/0009-0002-1727-8538" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong><strong>,</strong> <strong>Huy Tran <sup>1,<a href="https://orcid.org/0000-0003-0693-1351" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong><strong>,</strong> <strong>Dezun Ma <sup>1</sup></strong> <strong>and Jingwei Xie <sup>1,2,*,<a href="https://orcid.org/0000-0002-8126-1397" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong></p> </div> <div class="abstract_top"> <p><sup>1 </sup>Department of Surgery-Transplant and Mary &amp; Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA</p> <p><sup>2 </sup>Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA</p> <p>* Correspondence: jingwei.xie@unmc.edu</p> <p>Received: 30 September 2024; Revised: 18 November 2024; Accepted: 20 November 2024; Published: 21 November 2024</p> <p> </p> </div> <p><strong id="abstract" class="label">Abstract: </strong>Emerging piezoelectric metamaterials hold immense promise for biomedical applications by merging the intrinsic electrical properties of piezoelectricity with the precise architecture of metamaterials. This review provides a comprehensive overview of various piezoelectric materials- such as molecular crystals, ceramics, and polymers—known for their exceptional piezoelectric performance and biocompatibility. We explore the advanced engineering approaches, including molecular design, supramolecular packing, and 3D assembly, which enable the customization of piezoelectric properties for targeted biomedical applications. Particular attention is given to the pivotal role of metamaterial structuring in the development of 0D spheres, 1D fibers and tubes, 2D films, and 3D scaffolds. Key biomedical applications, including tissue engineering, drug delivery, wound healing, and biosensing, are discussed through illustrative examples. Finally, the article addresses critical challenges and future directions, aiming to drive further innovations in piezoelectric biomaterials for next-generation healthcare technologies.</p> <p class="art_imgtitle" style="width: 60%; margin-left: 20%;"><img src="https://www.sciltp.com/journals/public/site/images/yu.xu@sciltp.com/ga-a559fd2fff0ea18508fd3a61850abdf5.jpg" alt="" width="388" height="345" /></p> 2024-11-21T00:00:00+08:00 Copyright (c) 2024 by the authors. https://test.sciltp.com/testj/mi/article/view/519 A Novel Bi-Directional and Bi-Temporal Delivery System for Enhancing Intrasynovial Tendon Repair 2024-09-26T16:16:05+08:00 Yidan Chen ychen3335@gatech.edu Seth Kinoshita skinoshita3@gatech.edu Emily Yan emilyyan@gatech.edu Min Hao mhao36@gatech.edu Hua Shen hshen22@wustl.edu Richard Gelberman gelbermanr@wustl.edu Stavros Thomopoulos sat2@cumc.columbia.edu Younan Xia younan.xia@bme.gatech.edu <p class="categorytitle"><em>Article</em></p> <h1>A Novel Bi-Directional and Bi-Temporal Delivery System for Enhancing Intrasynovial Tendon Repair</h1> <div class="abstract_title"> <p><strong>Yidan Chen <sup>1,<a href="https://orcid.org/0000-0001-9472-4138" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>, Seth Kinoshita <sup>2,<a href="https://orcid.org/0009-0001-3355-8647" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>, Emily Yan <sup>3</sup>, Min Hao <sup>3,<a href="https://orcid.org/0009-0006-3517-3392" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>, Hua Shen <sup>4,<a href="https://orcid.org/0000-0001-9060-8172" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>, Richard Gelberman <sup>4,<a href="https://orcid.org/0000-0003-2457-6867" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>, Stavros Thomopoulos <sup>5,<a href="https://orcid.org/0000-0003-1531-4849" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>, and Younan Xia <sup>2,3,*,<a href="https://orcid.org/0000-0003-2431-7048" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong></p> </div> <div class="abstract_top"> <p><sup>1</sup> School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA</p> <p><sup>2</sup> School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA</p> <p><sup>3</sup> The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA</p> <p><sup>4</sup> Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA</p> <p><sup>5</sup> Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA</p> <p><strong>*</strong> Correspondence: younan.xia@bme.gatech.edu</p> </div> <div class="abstract_top"> <p>Received: 24 September 2024;<strong> </strong>Revised: 8 October 2024; Accepted: 14 October 2024; Published: 18 October 2024</p> </div> <p><strong class="label">Abstract: </strong>Flexor tendon injuries are common and often require surgical repair and prolonged rehabilitation. Successful clinical outcomes depend on the concurrent suppression of adhesions (caused by inflammation) at the tendon surface and promotion of matrix synthesis inside the tendon. Herein, we report a bi-directional and bi-temporal drug delivery system designed to target both the initial inflammatory phase and the subsequent proliferative and remodeling phases of healing to improve outcomes after flexor tendon repair. The system features a multi-layered design with anti-adhesion and pro-matrix factors encapsulated in separate layers of hyaluronate films crosslinked to different degrees to control their direction and rate of release. After validating drug delivery under controlled release, cell culture experiments involving tendon fibroblasts and a Transwell system are conducted to demonstrate the system’s efficacy in modulating local cellular responses. The promising results from this study lay the groundwork for moving this system toward in vivo testing and clinical translation.</p> <p class="art_imgtitle" style="width: 60%; margin-left: 20%;"><img src="https://www.sciltp.com/journals/files/journals/33/articles/519/519.png" /></p> 2024-10-18T00:00:00+08:00 Copyright (c) 2024 by the authors. https://test.sciltp.com/testj/mi/article/view/494 Effect of Protein Loading Density on the Structure and Biopreservation Efficacy of Metal-Organic Frameworks 2024-09-19T11:26:28+08:00 Yixuan Wang yixuan.wang@wustl.edu Sirimuvva Tadepalli stade@stanford.edu Harsh Baldi b.harsh@wustl.edu Jeremiah Morrissey morrisseyjj@wustl.edu Srikanth Singamaneni singamaneni@wustl.edu <p class="categorytitle"><em>Article</em></p> <h1>Effect of Protein Loading Density on the Structure and Biopreservation Efficacy of Metal-Organic Frameworks</h1> <div class="abstract_title"> <p><strong>Yixuan Wang <sup>1,2,<a href="https://orcid.org/0000-0002-2518-0699" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong>, <strong>Sirimuvva Tadepalli <sup>3,†,<a href="https://orcid.org/0000-0001-9658-9988" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong>, <strong>Harsh Baldi <sup>1,2,<a href="https://orcid.org/0000-0002-0605-5980" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong>, <strong>Jeremiah J. Morrissey <sup>1,4,<a href="https://orcid.org/0000-0002-9911-4811" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong> <strong>and</strong> <br /><strong>Srikanth Singamaneni <sup>1,2,4,*,<a href="https://orcid.org/0000-0002-7203-2613" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong></p> </div> <div class="abstract_top"> <p><sup>1 </sup>Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA</p> <p><sup>2 </sup>Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA</p> <p><sup>3 </sup>Radiation Oncology-Radiation Physics, Stanford School of Medicine, Stanford, CA 94305, USA</p> <p><sup>4 </sup>Siteman Cancer Center, Barnes-Jewish Hospital, and Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA</p> <p>* Correspondence: singamaneni@wustl.edu</p> <p>† Present Affiliation: Department of Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA</p> <p>Received: 9 September 2024; Revised: 31 October 2024; Accepted: 5 November 2024; Published: 20 November 2024</p> <p> </p> </div> <p><strong id="abstract" class="label">Abstract: </strong>Metal-organic frameworks (MOFs) have emerged as attractive bioencapsulants for preserving the structure and function of various biomolecules against harsh environmental conditions. However, the effect of the loading density of the biomolecules on the structure, physical properties, and biopreservation efficacy of MOF crystals remains elusive. We investigated the structure and properties of zeolitic imidazolate framework (ZIF)-90 crystals as a function of the loading density of a model protein, bovine/human serum albumin (BSA/HSA). We show that the total protein concentration in the MOF growth reaction solution significantly affects the morphology, degree of crystallinity, and biopreservation efficacy of the MOF crystals. The structure integrity and immunologic functionality of albumin remained well-preserved within an optimal protein concentration range of 0.1–1 mg/mL. The proposed optimal range of biomolecule concentration during in situ MOF growth is critical for guiding future research and design endeavors within the rapidly evolving field of MOF-biomedical applications, offering exciting possibilities for biopreservation, drug delivery, and diagnostics.</p> <p class="art_imgtitle" style="width: 60%; margin-left: 20%;"><img src="https://www.sciltp.com/journals/public/site/images/yu.xu@sciltp.com/ga.jpg" alt="" width="693" height="361" /></p> 2024-11-20T00:00:00+08:00 Copyright (c) 2024 by the authors. https://test.sciltp.com/testj/mi/article/view/515 Silver-Platinum Hollow Nanoparticles as Labels for Colorimetric Lateral Flow Assay 2024-10-12T15:00:38+08:00 Jinfeng Zhou jinfeng.zhou@ucf.edu Shikuan Shao Shikuan.Shao@ucf.edu Zhiyuan Wei Zhiyuan.Wei@ucf.edu Xiaohu Xia Xiaohu.Xia@ucf.edu <p class="categorytitle"><em>Article</em></p> <h1>Silver-Platinum Hollow Nanoparticles as Labels for Colorimetric Lateral Flow Assay</h1> <div class="abstract_title"> <p><strong>Jinfeng Zhou <sup>1</sup></strong>, <strong>Shikuan Shao <sup>1,<a href="https://orcid.org/0000-0003-0149-9942" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong>, <strong>Zhiyuan Wei <sup>1,<a href="https://orcid.org/0000-0002-3087-3705" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong> <strong>and Xiaohu Xia <sup>1,2,*,<a href="https://orcid.org/0000-0002-6372-7712" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong></p> </div> <div class="abstract_top"> <p><sup>1 </sup>Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA</p> <p><sup>2 </sup>NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, USA</p> <p>* Correspondence: xiaohu.xia@ucf.edu</p> <p>Received: 23 September 2024; Revised: 7 November 2024; Accepted: 12 November 2024; Published: 18 November 2024</p> <p> </p> </div> <p><strong id="abstract" class="label">Abstract: </strong>Colorimetric lateral flow assay (CLFA) has been a widely recognized point-of-care testing technology over the past few decades. Driven by the increasing demand in various biomedical applications, it is urgently needed to develop CLFAs with high sensitivities and low costs. In this work, we report a type of CLFA that relies on unique colorimetric labels—silver-platinum hollow nanoparticles (Ag-Pt HNPs). The Ag-Pt HNPs possess intrinsic enzyme-like catalytic activities, providing the Ag-Pt HNP-based CLFA with strong color signal and thus a high sensitivity. Meanwhile, the Ag-Pt HNPs have hollow interiors and are mainly composed of less expensive silver, making the Ag-Pt HNP-based CLFA cost-effective. Using prostate-specific antigen (PSA) as a model disease biomarker, the Ag-Pt HNP-based CLFA achieved a high sensitivity with a detection limit at the low picogram-per-milliliter level. Potential application of the CLFA in clinical diagnosis was demonstrated by detecting PSA from human serum samples.</p> <p class="art_imgtitle" style="width: 60%; margin-left: 20%;"><img src="https://www.sciltp.com/journals/public/site/images/yu.xu@sciltp.com/4.jpg" alt="" width="450" height="256" /></p> 2024-11-18T00:00:00+08:00 Copyright (c) 2024 by the authors. https://test.sciltp.com/testj/mi/article/view/552 Piezocatalytic ZnS: Mn<sup>2+</sup> Nanocrystals for Enhanced Organic Dye Degradation 2024-10-18T12:02:31+08:00 Zhongxiang Wang zwang418@ucr.edu Elizaveta Tiukalova tiukalovae@ornl.gov Youyi Tai ytai001@ucr.edu Miaofang Chi chim@ornl.gov Jin Nam jnam@engr.ucr.edu Yadong Yin yadong.yin@ucr.edu <p class="categorytitle"><em>Article</em></p> <h1>Piezocatalytic ZnS: Mn<sup>2+</sup> Nanocrystals for Enhanced Organic Dye Degradation</h1> <div class="abstract_title"> <p><strong>Zhongxiang Wang <sup>1,<a href="https://orcid.org/0009-0004-4870-0767" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>,</strong> <strong>Elizaveta Tiukalova <sup>2,<a href="https://orcid.org/0000-0002-2534-4737" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>,</strong> <strong>Youyi Tai <sup>3,<a href="https://orcid.org/0000-0002-2530-4225" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>,</strong> <strong>Miaofang Chi <sup>2,<a href="https://orcid.org/0000-0003-0764-1567" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>,</strong> <strong>Jin Nam <sup>3,*,<a href="https://orcid.org/0000-0001-5117-8958" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong> <strong>and</strong><br /><strong>Yadong Yin <sup>1,*,<a href="https://orcid.org/0000-0003-0218-3042" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong></p> </div> <div class="abstract_top"> <p><sup>1 </sup>Department of Chemistry, University of California, Riverside, CA 92521, USA</p> <p><sup>2 </sup>Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA</p> <p><sup>3 </sup>Department of Bioengineering, University of California, Riverside, CA 92521, USA</p> <p>* Correspondence: jnam@engr.ucr.edu (J.N.); yadong.yin@ucr.edu (Y.Y.)</p> <p>Received: 15 October 2024; Revised: 20 November 2024; Accepted: 21 November 2024; Published: 22 November 2024</p> <p> </p> </div> <p><strong id="abstract" class="label">Abstract: </strong>Piezocatalysis, an emerging approach that harnesses mechanical energy to drive chemical reactions, has garnered significant attention due to its potential applications in diverse fields, particularly in environmental remediation. Its broader application, however, is often hindered by the low efficiency of existing piezocatalytic materials. Here, we report the synthesis of Mn2+-doped ZnS nanocrystals with improved piezoelectric properties using an emulsion-based colloidal assembly technique. Through well-controlled Mn2+ doping, these nanocrystals demonstrate high piezocatalytic activity for degrading organic dyes under ultrasonic vibration. The optimal performance is achieved with 3% Mn2+ doping, outperforming many existing piezocatalysts. Mechanistic studies reveal the generation of reactive oxygen species as the primary driving force for degradation. Notably, pre-excitation with UV light further boosts the piezocatalytic efficiency of these metal ion-doped ZnS nanocrystals by filling electron trap states, leading to improved overall performance. This research paves the way for developing high-performance piezocatalysts, expanding the potential of piezocatalysis for a wide range of applications.</p> <p class="art_imgtitle" style="width: 60%; margin-left: 20%;"><img src="https://www.sciltp.com/journals/public/site/images/yu.xu@sciltp.com/ga-8eb23ee161bb6e4420a8ce81d732f33e.jpg" alt="" width="584" height="342" /></p> 2024-11-22T00:00:00+08:00 Copyright (c) 2024 by the authors. https://test.sciltp.com/testj/mi/article/view/562 Cathodic Corrosion-Induced Structural Evolution of CuNi Electrocatalysts for Enhanced CO<sub>2</sub> Reduction 2024-12-06T11:04:55+08:00 Wenjin Sun uzg3zk@virginia.edu Bokki Min bm8pz@virginia.edu Maoyu Wang mywang@anl.gov Xue Han xhan@bnl.gov Qiang Gao gaoq215@ustc.edu.cn Sooyeon Hwang soohwang@bnl.gov Hua Zhou hzhou@anl.gov Huiyuan Zhu kkx8js@virginia.edu <p class="categorytitle"><em>Article</em></p> <h1>Cathodic Corrosion-Induced Structural Evolution of CuNi Electrocatalysts for Enhanced CO<sub>2</sub> Reduction</h1> <div class="abstract_title"> <p><strong>Wenjin Sun <sup>1,†</sup>, Bokki Min <sup>2,†</sup>, Maoyu Wang <sup>3</sup>, Xue Han <sup>4</sup>, Qiang Gao <sup>1,<a href="https://orcid.org/0000-0002-6303-9573" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>, Sooyeon Hwang <sup>5,<a href="https://orcid.org/0000-0001-5606-6728" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup>, Hua Zhou <sup>3,<a href="https://orcid.org/0000-0001-9642-8674" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup> and Huiyuan Zhu <sup>1,2,*,<a href="https://orcid.org/0000-0002-9962-1661" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong></p> </div> <div class="abstract_top"> <p><sup>1 </sup>Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA</p> <p><sup>2 </sup>Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA</p> <p><sup>3 </sup>Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA</p> <p><sup>4 </sup>Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA</p> <p><sup>5 </sup>Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA</p> <p>* Correspondence: kkx8js@virginia.com</p> <p>† These authors contributed equally to this work.</p> <p>Received: 22 October 2024; Revised: 25 November 2024; Accepted: 27 November 2024; Published: 4 December 2024</p> <p> </p> </div> <p><strong id="abstract" class="label">Abstract: </strong>The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) has attracted significant attention as a promising strategy for storing intermittent energy in chemical bonds while sustainably producing value-added chemicals and fuels. Copper-based bimetallic catalysts are particularly appealing for CO<sub>2</sub>RR due to their unique ability to generate multi-carbon products. While substantial effort has been devoted to developing new catalysts, the evolution of bimetallic systems under operational conditions remains underexplored. In this work, we synthesized a series of Cu<sub>x</sub>Ni<sub>1−x</sub> nanoparticles and investigated their structural evolution during CO<sub>2</sub>RR. Due to the higher oxophilicity of Ni compared to Cu, the particles tend to become Ni-enriched at the surface upon air exposure, promoting the competing hydrogen evolution reaction (HER). At negative activation potentials, cathodic corrosion has been observed in Cu<sub>x</sub>Ni<sub>1−x</sub> nanoparticles, leading to the significant Ni loss and the formation of irregularly shaped Cu nanoparticles with increased defects. This structural evolution, driven by cathodic corrosion, shifts the electrolysis from HER toward CO<sub>2</sub> reduction, significantly enhancing the Faradaic efficiency of multi-carbon products (C<sub>2+</sub>).</p> <p class="art_imgtitle" style="width: 60%; margin-left: 20%;"><img src="https://www.sciltp.com/journals/public/site/images/yu.xu@sciltp.com/ga-4f0c5c939418d4e9bb2c77e3b3605f98.jpg" alt="" width="518" height="178" /></p> 2024-12-04T00:00:00+08:00 Copyright (c) 2024 by the authors. https://test.sciltp.com/testj/mi/article/view/578 Controlled Polymerization of Aniline against Templating Oxide Nanostructures 2024-12-06T11:04:52+08:00 Matas Simukaitis tuo78006@temple.edu Grace Purnell grace.purnell@temple.edu Zachary Zander zachary.b.zander.civ@army.mil Danielle Kuhn danielle.l.kuhn.civ@army.mil Yugang Sun ygsun@temple.edu <p class="categorytitle"><em>Article</em></p> <h1>Controlled Polymerization of Aniline against Templating Oxide Nanostructures</h1> <div class="abstract_title"> <p><strong>Matas Simukaitis <sup>1</sup>, Grace Purnell <sup>1</sup>, Zachary Zander <sup>2</sup>, Danielle Kuhn <sup>2,<a href="https://orcid.org/0000-0002-0270-5317" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup> and Yugang Sun <sup>1,*,<a href="https://orcid.org/0000-0001-6351-6977" target="_blank" rel="noopener"><img style="position: relative; width: 20px; margin-left: 3px; max-width: 20px !important; height: auto; top: 5px;" title="ORCID" src="https://www.sciltp.com/journals/public/site/images/orcid.png" /></a></sup></strong></p> </div> <div class="abstract_top"> <p><sup>1 </sup>Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, PA 19122, USA</p> <p><sup>2 </sup>U.S. Army DEVCOM Chemical Biological Center, Research &amp; Technology Directorate, Aberdeen Proving Ground, MD 21010, USA</p> <p>* Correspondence: ygsun@temple.edu</p> <p>Received: 6 November 2024; Revised: 30 November 2024; Accepted: 3 December 2024; Published: 4 December 2024</p> <p> </p> </div> <p><strong id="abstract" class="label">Abstract: </strong>Conducting polyaniline (PANI) nanotubes with strong broadband optical absorption have been synthesized using single-crystalline MnO2 nanotubes as a solid-state oxidant that can oxidize aniline to induce polymerization in acidic solutions. The smooth surfaces and high crystalline integrity of the MnO2 nanotubes provide the appropriate reactive solid/liquid interface and templating effect to enable the transformation of the MnO2 nanotubes into PANI nanotubes. Such templated chemical transformation can be extended to silica-coated MnO2 nanotubes, allowing the synthesis of silica-coated PANI nanotubes, which are challenging to be synthesized through direct coating silica on PANI nanotubes due to the low wettability between PANI and silica. The versatile chemistry of the outer silica shells opens the possibility of modifying the as-synthesized PANI nanotubes, which usually inconveniently graft other interesting motifs.</p> <p class="art_imgtitle" style="width: 60%; margin-left: 20%;"><img src="https://www.sciltp.com/journals/public/site/images/yu.xu@sciltp.com/ms578-toc.jpg" alt="" width="1985" height="1333" /></p> 2024-12-04T00:00:00+08:00 Copyright (c) 2024 by the authors.