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Abstract: In dimensionality reduction techniques an important step is to construct optimal similarity graph to
achieve effective classification results. The graph construction process in many existing algorithms is manual and
thus severely affects the classification performance, if the neighborhood parameter is not optimal. Moreover, ex-
isting methods that are based on Collaborative representation lack the between-class information in the embedding
process. In this paper, we addressed the problem of automatic Graph construction which is datum adaptive and
incorporates within-class and between-class information into the linear representation to learn optimal projection
for dimensionality reduction using the Collaborative representation technique. To optimize graph construction, the
proposed method used the L2 norm graph and log-Euclidean distance. The resultant graph shows local properties
by Collaborative representation and global discriminate information is represented by a Maximum Margin classi-
fier (MMC). The MMC maximizes “between-class scatter” and minimizes “within-class scatter”, without locality
information. Further for effective and accurate performance for image classification real databases will be incor-
porated. The experimental results have demonstrated that the proposed methods achieved competitive results with
compared methods.

Keywords: index terms; K-nearest neighbor; PCA; locally linear embedding (LLE); locality preserving discrimi-
nant projection (LPDP)

1. Introduction

Dimensionality reduction aim is to transform the high-dimension data into lower-dimension by discarding the
un-informative variance in the data. Conversion of high-dimensional data into low-dimensional data is appreciated
in the visualization and compressing of data. Dimensionality reduction plays a significant role in better classifi-
cation, prediction, and visualization of data [1]. There are many applications of dimensionality reduction such as
text mining, image retrieval, biological data analysis (e.g., protein classification), and face recognition [2].

Dimensionality reduction is an effective method to improve the “curse of dimensionality” problem. The
large number of features in the high dimensional data set can cause an overfitting problem, which can not only
increase computational complexity but also degrade the performance in classification [3]. Answering the similarity
quareies in high dimensions is also a big issue due to the “curse of dimensionality”. To overcome this problem
“Dimensionality reduction” is a useful technique to visualize the data and compress the data.

Recently, Manifold learning approaches for dimensionality reduction have shown great interest because these
techniques can find out the unknown intrinsic data structure that is hidden in high dimensional data space [3, 4],
such as Locally linear embedding (LLE) [5], neighborhood preserving projection (NPE) [3] and, locality preserving
discriminant projection (LPDP) [1]. We use graphs to find the objects or entities’ properties and their binary
relationship. In the above-mentioned techniques, the graph construction process for similarity calculation among
data items plays a significant role.

Popular subspace learning methods such as Principal Component Analysis (PCA), Linear Discriminant Anal-
ysis (LDA) [6], LLE [7, 8], neighborhood preserving projection (NPE), and, LPDP [1] start with graph construc-
tion. These techniques depend on the manual selection of suitable parameters to get the optimal graph construction
which is a difficult task and time-consuming when data is on a large scale [9, 10].

The key problem in the optimal graph construction process is how to set the neighborhood size and weight
parameters. In existing methods [11], neighborhood selection and weight assignment to corresponding edges are
done separately, hence in the proposed method, it is desirable to simultaneously find adaptive neighborhood and
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weight assignment under a unified framework.
Most of the dimensionality reduction approaches construct the nearest neighbor graph using Euclidean dis-

tance between images but it may not find out the hidden intrinsic structure [4]. To uncover the intrinsic structures
from high-dimensional data, have shown that Log-Euclidean distance is more effective than Euclidean distance
for neighborhood calculation in high-dimensional space [5]. Then the proposed supervised dimensional reduction
method is introduced which is intrinsic structure feature transform (ISFT) which constructs the nearest neighbor
graph using log-Euclidean distance for the measurement of neighbor circles to capture the local structure. It finds
a representative image for each class and it captures the global structure by using projected data samples of these
representatives to maximize the between-class scatter measure. To achieve the optimal graph projection matrix it
utilizes the L2 norm regularized least square to maximize the ratio between total separability information and local
compactness [11].

There are many existing Dimensionality reduction techniques like Sparse based representation classification
(SRC) technique which shows outstanding performance to get optimal graph construction [12, 13] but it needs
to address the L1 norm graph optimization problem as its computational cost is expensive and its computation
is slow [2, 5, 14]. To overcome the problem of SRC, our proposed method uses the L2 norm graph regularized
least square which has considerably less image computational burden and achieves outstanding performance in the
classification of images [7, 15].

In our proposed method it has been shown [1, 2, 7, 16, 17] that Collaborative representation performance for
image classification is much better than sparse representation-based classification techniques. To measure effective
and accurate performance, some of the publically available databases such as YaleB, AR and ORL will be used in
our proposed algorithm.

Our proposed Dimensionality Reduction approach emphasizes several aspects:

1. It preserves the Collaborative representation which shows better performance as compared to Sparse repre-
sentation.

2. The adjacency weight matrix is constructed based on the CR framework which shows the nonlinear geometry
of the data set. Linear Collaborative representation has great capability to transform the hidden intrinsic
structure in the high dimensional data set.

3. It achieves the graph adjacency matrix and their corresponding weights simultaneously in a unified frame-
work.

4. For optimal graph projection matrix, it utilizes the L2-norm least regularized square approach which has less
computational cost as compared to L1-norm regularization.

5. To select datum adaptive neighborhood, it uses Log-Euclidean distance which shows robust performance as
compared to Euclidean distance.

6. To capture global properties to discriminate information it utilizes the (MMC) maximum margin framework
which maximizes the “between class scatter” and minimizes the “within class scatter” for discriminate infor-
mation.

7. Then finally low embedding is obtained to best preserve such reconstruction weights.
8. We evaluated the performance of the proposed algorithm on high dimensional data which reduces it to low

dimension and gives the required results.
9. The Proposed algorithm is also tested on some publically available datasets such as YaleB, ORL, and UMIST

data sets.

In the end, we also analyzed the performance of the algorithm through dimensionality reduction by projecting
it from high dimensional data to lower dimensionality reduction. Our algorithm has incomparable results compared
to other state-of-the-art algorithms.

2. Related Work on Dimensionality Reduction Technique

Security sectors and law enforcement agencies need image classification applications that are robust and can
perform accurate classification with less computational time [18, 19]. Considering these real-world scenarios, the
given test image may be partially noised (contiguous occlusion) and the training image samples may be insufficient
to model all possible variations of a given test sample so under these conditions the face recognition problem
becomes a very challenging task, and remain an open research problem [8, 20]. Real-world face images include
a large number of variations; face images are high dimensional having several variations. The variation includes
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factors like noise, illumination, and pose variations [21]. In these cases, identifying the accurate class of the test
sample from the training images dictionary is a complicated task. Partially noised (contiguous occlusion) images
make the face image classification task more complicated [10, 22, 23].

2.1. Graph-Based Approach

The Graph construction process for similarity calculation among data items plays a significant role. To find
the properties of the object and their binary relationship we use graphs. The graph represents the pairwise rela-
tionship between data samples in which nodes represent the data points and edges represent the distance between
the points. Data points are represented in the form of a graph, called a similarity graph. Where nodes of the graph
represent the data points and edges represent their corresponding weights according to the distance between the
points. Similar points carry higher weights and are grouped into the same class while the dissimilar points that
carry low edge weights are grouped into different classes.

In existing methods [7, 8, 15], neighborhood selection and weight assignment to corresponding edges are done
separately, hence in the proposed method, it is desirable to simultaneously find adaptive neighborhood and weight
assignment under a unified framework. Some graph construction methods have been used by different researchers
which include manual techniques as well as some automatic graph construction techniques [10, 24, 25]. In manual
techniques, some researchers construct the graph using b-matching, and some construct using K-nearest neighbors
and ϵ-ball neighborhoods [26, 27]. Automatic graph construction techniques include sparse representation-based
framework (SRC) and collaborative representation-based framework (CRC) [28, 29] .

2.2. K-Nearest Neighbors (KNN) and ϵ-Ball Neighborhood

Graph construction techniques involve adjacency graph construction based on KNN, ϵ-ball neighborhoods,
or fully connected graphs. The ϵ-ball neighborhood is considered an unweighted graph as all those points are
connected whose pairwise distance is smaller than ϵ value [27]. In K–nearest- neighbor we connect vertex ith with
vertex jth if they are the nearest neighbor depending on the value ‘k’ [26, 30].

In a fully connected graph, the graph shows the local neighborhood relationship in which we simply connect
all data points with the same similarity with each other and is the parameter that controls the width of the neighbors
in the fully connected graph as parameter controls in ϵ-ball neighborhood (function of both the parameter is the
same). The distance between all the edges is measured as edges do not contain much information. The draw-
backs of these methods are that these methods are manual and require the selection of appropriate parameters, the
selection of subspace dimensions, etc. [31].

3. Proposed Method for Collaborative Neighborhood Representation Discriminant Embedding

We propose a collaborative representation framework for dimensionality reduction as shown in Figure 1. The
proposed algorithm is formulated for data points that lie in a union of linear subspaces. The proposed algorithm
focuses on adaptive graph representation which deals with the problems related to the automatic construction of
graphs. It uses the self-expression property of data using CR to obtain automatic construction of graphs as well as
assigning weights to edges automatically and embeds the high dimensional data into low dimensional space.

Our proposed algorithm consists of two major steps as shown in Figure 1. First, we find a few other data points
that correspond to the same subspace for each sample using the proposed optimization program i-e collaborative
neighborhood representation (CNR) that gives information about members of the data points. The collaborative
representation learning method for dimensionality reduction has much interest because this technique has great
capability to find out the hidden intrinsic data structure in the high dimensional data space [32, 33]. For optimal
graph projection matrix, it utilizes the L2-norm least regularized square approach which is less computational
cost as compared to L1-norm regularization [11, 34]. To capture global properties to discriminate information it
utilizes the (MMC) maximum margin framework which maximizes the “between class scatter” and minimizes the
“within class scatter” for discriminate information [3]. Then finally low embedding is obtained to best preserve
such reconstruction weights. Secondly, the projection matrix is a “Collaborative representation” framework that
shows the nonlinear geometry of the data set, and conveys discriminate information “within class scatter” and
“between class scatter”.
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Figure 1. Block Diagram of Proposed System Model.

3.1. Steps for Dimensional Reduction

Following are the steps are:

3.1.1. Graph Construction

Data points are represented in the form of a graph, called a similarity graph. Where nodes of the graph
represent the data points and edges represent their corresponding weights according to the distance between the
points. The similar points carry higher weights and are grouped into the same class while the dissimilar point
carries lower weights and are grouped in a different class [35].

An important step in existing [36] state-of-the-art Dimensionality reduction techniques is constructing an
optimal similarity graph to achieve effective classification results. The graph construction process in many existing
algorithms is manual and thus severely affects the classification performance, if the neighborhood parameter is
not optimal [37]. Moreover, existing methods are based on Collaborative representation that lacks the between-
class information in the embedding process [38]. In this work, we will address the problem of automatic graph
construction which is datum adaptive and incorporates within-class and between-class information into the linear
representation to learn optimal projection for dimensionality reduction using Collaborative representation. The
adjacency weight matrix is constructed based on the CR framework which shows the nonlinear geometry of the
data set.

3.1.2. Collaborative Nearest Neighborhood (CNR) Optimization

Our proposed algorithm has a special feature that uses the self-expressiveness property of the data which
represents each data point in the union of the subspace, by the combination of the other data points in the same
subspace. The first step of our algorithm is the selection of datasets that are available publicly. Datasets give
information on various samples/data points or images and their corresponding number of classes, image sizes, etc
[39]. A collaborative neighborhood representation (CNR) framework is used to calculate the effective coefficients
to construct a similarity graph. Secondly, the projection matrix is the “Collaborative representation” framework
which shows the nonlinear geometry of the data set, and conveys discriminate information “within class scatter”
and “between class scatter”. Then finally low embedding is obtained to preserve such reconstruction weights.

3.1.3. CNR Coefficients Calculation

The proposed algorithm makes use of the self-expressive property of data i-e it enforces automatic graph
construction, inspired by Collaborative neighborhood representation-based classification (CNR) . CNR represents
each data point as a linear combination of nearest neighbors. It chooses the nearest neighbor ideal to represent data
points from the complete dictionary. Optimum selected neighbors lie in the same subspace as sample xi. Linear
representation of query sample among dictionary is represented by

Let {xi}ni=0 be the data points that lie in the union of n subspaces having unknown dimensions.

xi ≈ Dβ Where D ∈ Rm×n
(
m > n

)
(1)
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D is an over-complete dictionary that is it represents the matrix that concatenates all the data points, and β

represents the coefficients. Concatenating all the samples in D, and Dk reduced dimension in lower dimension as
shown in below the equations. It can be presented as:

D =
[
D1 D2 . . . Dn

]
∈ Rm×n

Dk =
[
dk1 dk2 . . . dknk

]
∈ Rm×nk

β = argmin
β

(
1

2
∥x−Dβ∥22 + σ

n∑
i=1

β2
i ∥x− xi∥22 + λ∥β∥22

)
(2)

The first term of the Equation (2) in brackets shows the linear reconstruction error calculated against each
class, x represents the data point, D represents the dictionary, and β represents the coefficient computed against
each data point. xi represents each data point in dictionary D. where σ and λ are regularization terms having
positive terms to introduce some sparsity and β2

i is a coefficient vector having positive values. The full proof of
Equation (2) the equation is shown in the Appendix A.

The Proposed solution of the objective function is as follows

β =

DTD + λI + σ

∥x− x1∥2 . . . 0
...

. . .
...

0 . . . ∥x− xn∥2




−1

DTx (3)

where βk = [0, . . . , 0, βk1, βk2, . . . , βknk
, 0, . . . , 0]T is a vector whose only nonzero entries corresponding to

the kth class are the coefficients of β.
The diagonal matrix in Equation (3) representing distance between data point and all other data points of

the dictionary. Obtained coefficients are used to build similarity graph. Obtained CNR coefficients from the
diagonal matrix is used to generate weight or similarity matrix representing relationship between data points. If we
receive the highest value of weight than it means data points are more similar points. Based on the corresponding
coefficient weights similarity graph is constructed. Data points that have higher weights lie in the same space than
others.

3.1.4. Embedding (Discriminate Projection Matrix)

The second step of dimensionality reduction is graph embedding in a low-dimensional subspace [33]. In
our case, we built this similarity graph using our proposed method CNR. Obtained CNR coefficients from the
diagonal matrix (as explained above) are used to generate a weight or similarity matrix representing the relationship
between data points [40]. Similar data points receive more weight than others. Based on the corresponding weights
similarity graph is constructed. Data points that have higher weights lie in the same space as others.

To capture global properties to discriminate information it utilizes the MMC framework which maximizes the
“between class scatter” and minimizes the “within class scatter” for discriminate information [41]. Then finally
low embedding is obtained to best preserve such reconstruction weights.

Optimization of the objection function is defined as follows:
min
i,j

∑
i,j

∥yi − yj∥2 Wij

s.t. PTP = I

(4)

3.1.5. Graph Laplacians

The next step of the method is a calculation of graph Laplacian which is the main tool of locality information.
Laplacian can be obtained from degree matrix D of W. Degree matrix is a diagonal matrix dii =

∑n
j=1 Wij and

holds the information about the number of edges that are attached to each vertex.
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Laplacian Matrix Is Defined as

L = D −W

For locality information: Construct Laplacian matrix as L = D – W. where D is a diagonal matrix whose
entries are row sums of W, where dii =

∑n
j=1 Wij When we have connected components the adjacency matrix W

forms the block diagonal and the same is also true for L.

L =


L1 0 . . . 0

0 L2 . . . 0
...

...
. . .

...
0 0 . . . Ln


As L is a block diagonal that represents the Eigenvalues and corresponding Eigenvectors in corresponding

blocks has n non-negative values. The smallest eigenvalue is zero. We find the largest eigenvectors in our graph.
Solving this equation:

R = P (Drow −W )PT + P (Dcol −WT )P (5)

where (Drow −W )+ (Dcol −WT ) Laplacian matrix. Drow and Dcol are diagonal matrices whose elements are the
row and column sums of the W matrix, respectively.

For Between-Class Information and Within-Class Information

For each class xi find representative data points according to SMRS and calculate between class scatter SB

using

SB =

c∑
i=1

ci(µi − µ)(µi − µ)T (6)

SW =

c∑
i=1

 ci∑
j=1

(x
(i)
j − µi)(x

(i)
j − µ(i))

T

 (7)

where µ is the total mean of class, µi is the mean of ith class is the number of samples in the ith class, c is the
number of the classes ci is the average vector of the ith class, xi

j is the jth sample of ith class.

Eigen Solver

The next step of the method is to compute the eigenvalues and eigenvectors for the problem.

SBP = λSWP (8)

where P is formed from the optimal eigenvectors corresponding to the largest eigenvalues.
In our proposed method, we use the top eigenvector of the Laplacian matrix. These eigenvectors are used to

define the optimal cut.

3.1.6. Projection

Compute Projection matrix composed of optimal ‘r’ smallest eigenvectors

DLDTP = λ
ρ

1− ρ
SBP (9)

where ρ is the parameter that balances local and global contribution for data classification.

Classification

The projection is composed of the optimal projected vectors corresponding to the smallest eigenvalues Assign
the points to one or more classes based on sorted vectors. Once the eigenvectors are chosen next we sort the
components of the reduced vector and identify the classes by splitting the sorted vector.
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4. Simulation Setup and Results

The details of our experimental settings and simulation environment to generate low-dimensional space. It
also includes comparison methods that are used to compare our proposed method and their description. Differ-
ent benchmark datasets are used for dimensional reduction; their description and experimental setting are also
explained in the following section.

4.1. Simulation Setup

We have implemented the whole work on the Fujitsu Core i3 machine which has a 2.30 GHz processor with
4 GB RAM. MATLAB software is used for simulation results. The main performance parameter of our proposed
method includes accuracy.

4.2. Comparison with Previous Methods

We evaluated the performance of our proposed graph construction algorithm Collaborative neighborhood
representation (CNR) [32] with different graph construction algorithms, Collaborative representation classifier
[11], Locally linear embedding (LLE) [3, 5], neighborhood preserving projection (NPE) and, locality preserving
projection (LPP) [1]. Also, we compare the performance of the proposed algorithm on different data sets.

4.3. Datasets Used

We evaluated the performance of our proposed graph construction technique on different datasets which
include YaleB [42], UMIST database, and ORL [43] database. A detailed description of each dataset is presented
below:

4.4. Extended YaleB Database

The extended YaleB database contains 2414 images of 38 individuals with 64 images in each class and the
dimension of each image is 1024 (32 × 32). Each image varies under different lighting conditions for other images
of the same and different classes. Figure 2 shows some example images of the extended YaleB database.

Figure 2. Example images of YaleB database.

4.4.1. Results on YaleB Database

We evaluated the performance of our algorithm on different dimensions of samples extracted from the YaleB
database. We evaluated the results through a Collaborative representation framework (CR). Results clearly show
that the performance of the proposed algorithm is better in terms of accuracy than comparison algorithms as shown
in Table 1 and in Figure 3:

Figure 3. YaleB Data Set Accuracy graph.

7 of 14



J. Adv. Digit. Commun. 2024, 1(1), 100004.

Table 1. The highest accuracy achieved among comparison methods on the YaleB dataset.

Dimensionality Reduction LLE LPP NPE Proposed LLE LPP NPE Proposed

Reduced-dimension 100 100 100 100 200 200 200 200
Classes 38 38 38 38 38 38 38 38

Accuracy 85.2632 90.2632 95.263 97.894 82.3684 90.26 88.421 95.263
Correct Prediction 324 343 362 372 313 343 336 362

Training-data 380 380 380 380 380 380 380 380
Testing -data 380 380 380 380 380 380 380 380

Classifier KNN KNN KNN KNN KNN KNN KNN KNN

4.5. Umist Database

UMIST database contains 564 images of 20 individuals with 20 images in each class and the dimension of
each image is 1024 (32 × 32). Each image varies under different pose variations for other images of the same and
different classes. Figure 4 shows some example images of the UMIST database.

Figure 4. Example images of UMIST database.

4.5.1. Results on UMIST Database

We evaluated the performance of our algorithm on different samples extracted from the UMIST database. We
evaluate the result on different training datasets and on dimension dimensions. We evaluated the results through a
Collaborative representation framework (CR). Results clearly show that the performance of the proposed algorithm
is better in terms of accuracy than the comparison algorithms in Figure 5 and in Table 2. On different dimensions
50, 80, and 100 when training and test data 320/80, 200/180 are used, the best results are achieved compared to
existing methods, as shown in Figures 6 and 7.

Figure 5. UMIST Data Set Accuracy graph.
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Table 2. The highest accuracy achieved among comparisons methods on UMIST database.

Dimensionality Reduction LDA LPP NPE Proposed LDA LPP NPE Proposed

Red-dim 50 50 50 50 100 100 100 100
classes 20 20 20 20 20 20 20 20

Accuracy 93.3 85 93.6 95 93.3 51.6 91.6 96.6
Correct Prediction 55 45 55 57 55 40 53 58

Training-data 320 320 320 320 320 320 320 320
Testing -data 80 80 80 80 80 80 80 80

Classifier KNN KNN KNN KNN KNN KNN KNN KNN

Figure 6. Results on different Training and Test data 320/80 achieves best results as compared to existing methods.

Figure 7. Results on different Training and Test data 200/180 achieves best results as compared to existing methods.

4.6. ORL Database

ORL database used for the experimental setting was proposed by Olivetti Research Laboratory (ORL) whose
Director is Prof Andy Hopper FR Eng. It contains 400 images of size 1024 (32 × 32) for each image. ORL
database is divided into 40 classes having 10 images respectively. Each image is different from others in terms
of varying the lighting, facial expressions (open/closed eyes, smiling/not smiling), and facial details (glasses/no
glasses). Some images of a single class are shown in Figure 8.
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Figure 8. Example images of ORL database.

4.6.1. Results on ORL Database

We evaluated the performance of our algorithm on different images extracted from the ORL database. We
evaluate the result using different training datasets and dimensions. We evaluated the results through a Collabora-
tive representation framework (CR). Results clearly show that the performance of the proposed algorithm is better
in terms of accuracy than the comparison algorithm as shown in Table 3 and 9. On different dimensions 50, 80,
100, and 150 when training and test data 240/160, 280/120 are used, and the best results are achieved compared to
existing methods, as shown in Figures 10 and 11.

Figure 9. ORL Data Set Accuracy graph.

Table 3. The highest accuracy achieved among comparisons methods on ORL database.

Dimensionality Reduction LDA LPP NPE Proposed LDA LPP NPE Proposed

Red-dim 50 50 50 50 100 100 100 100
classes 40 40 40 40 40 40 40 40

Accuracy 86.3 86.6 87.5 91.66 86.3 85 86.6 87
Correct Prediction 99 102 105 110 99 100 103 104

Training-data 280 280 280 280 280 280 280 280
Testing -data 120 120 120 120 120 120 120 120

Classifier KNN KNN KNN KNN KNN KNN KNN KNN
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Figure 10. Results on different Training and Test data 240/160 achieves best results as compared to existing
methods.

Figure 11. Results on different Training and Test data 280/120 achieves best results as compared to existing
methods.

5. Conclusion and Future Work

In this paper, we proposed graph construction using an affinity matrix through collaborative representation
(CR framework) and transform data in low dimensional space which is useful for many discriminant tasks. The
proposed graph is used to categorize detected faces in a supervised approach. In Dimensionality reduction ‘The
graph construction process” plays a significant role in transforming the high-dimensional data set into the low
dimensional data set. The main problem in the optimal graph construction process is how to set the neighborhood
size and weight parameters. In existing methods [11, 32, 44], neighborhood selection, and weight assignment to
corresponding edges are done separately, hence it is desirable to simultaneously find adaptive neighborhood and
weight assignment under a unified framework.

In this work, we will address the problem of automatic Graph construction which is datum adaptive and
incorporates “within class” and “between class” information into the linear representation to learn the optimal
projection matrix for dimensionality reduction using the Collaborative representation technique. We also proved
that projecting data from a higher dimension to a lower dimension gives better results as compared to higher
dimensional data. Calculated results show that the proposed graph construction algorithm gives better accuracy
than other graphs construction algorithms including NPE, Local LLE, and LPP. Embedding in reduced space has
better results with less computational burden than embedding in high-dimensional feature space.

In the future, our work will address reducing the computational time of CNR, because when the number of
samples in each class increases, the construction of a graph becomes computationally expensive because of finding
relationships with all other samples in the database. Our research will cover more difficult databases.
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Appendix A. Closed-form Solution of Equation (2)

The closed-form solution of Equation (2) minimizes the linear reconstruction error calculated against each
class. The first term in Equation (2), within brackets, represents the linear reconstruction error calculated against
each class. Here, x represents the data point, D represents the dictionary, and β denotes the coefficient computed
for each data point. Additionally, xi represents each data point in the dictionary D. The parameters σ and λ

are regularization terms with positive values, introducing sparsity. Finally, β2
i is a coefficient vector comprising

positive values.
The objective function is defined as follows:

β = argmin
β

(
1
2∥x−Dβ∥22 + σ

∑n
i=1 β

2
i ∥x− xi∥22 + λ∥β∥22

)
The above equation is derived by taking the partial derivatives of the objective function and setting them equal

to zero, resulting in the following:

−DT (x−Dx) + σ

∥x− x1∥2 · · · 0
...

. . .
...

0 · · · ∥x− xn∥2

β + λβ = 0

Here, 
d1
d2
d3
...
dn


represents an n-dimensional coefficient vector with positive values associated with vector x.

To obtain the optimal solution, replace the xi coefficients with the corresponding elements of the solution
vector x. The final solution is expressed as:

β∗ =

DTD + σ

∥x− x1∥2 · · · 0
...

. . .
...

0 · · · ∥x− xn∥2

+ λI


−1

DTx

The diagonal matrix represents the distance between the data point and all other data points in the dictionary.
Obtained coefficients are used to build a similarity graph.
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