Downloads

Li, Z., Gong, Y., Li, X., & Xu, Z. Exploration of Channel Coding Techniques in OTFS Systems: Convolutional, Turbo, LDPC, and Polar Codes. Journal of Advanced Digital Communications. 2024. doi: Retrieved from https://test.sciltp.com/testj/jadc/article/view/422

Article

Exploration of Channel Coding Techniques in OTFS Systems: Convolutional, Turbo, LDPC, and Polar Codes

Zehao Li 1, Yi Gong 2,* , Xinru Li 1, Quan Wang 2 and Zhan Xu 1

1 Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, China; zehao.li@bistu.edu.cn (Z.L.), xinru.li@bistu.edu.cn (X.L.), xuzhan@bistu.edu.cn (Z.X.)

2 Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; wangquan@semi.ac.cn 

* Correspondence: gongyi@bistu.edu.cn

Received: 9 May 2024; Revised: 18 June 2024; Accepted: 20 June 2024; Published: 2 July 2024

 

Abstract: Orthogonal Time Frequency Space (OTFS) modulation has been verified in high-mobility scenarios as an effective solution to address the Doppler shift effect. To further improve the data transmission efficiency of the system, this paper delves into different channel coding techniques in the Delay-Doppler (DD) domain under OTFS modulation. This paper evaluates the system performance of various encoding schemes under multiple user mobility rates, including Convolutional codes, Turbo codes, Low-Density Parity-Check (LDPC) codes, and Polar codes. Additionally, this paper investigates the impact of adopting different modulation constellation mapping schemes on the system’s Bit Error Rate (BER) and explores strategies for enhancing system performance in high-speed data transmission scenarios. The simulation results show that the code-based system reduces the BER by about 17–35% compared to the uncoded OTFS system. In this case, the LDPC code system has a 10 dB Signal-to-Noise Ratio (SNR) gain. The simulation results demonstrate that combining coding techniques with OTFS modulation can significantly enhance the performance of communication systems in highly dynamic environments, with LDPC and Turbo codes showing notable advantages in performance improvement. The findings of this paper not only highlight the importance of choosing the right coding scheme and provide valuable references for the design of high-speed mobile communication systems in the DD domain.

Keywords:

OTFS channel coding convolutional coding turbo coding LDPC coding polar coding

References

  1. Gong, Y.; Li, X.; Meng, F.; Liu, F.; Guizani, M.; Xu, Z. Towards Green RF Chain Design for Integrated Sensing and Communications: Technologies and Future Directions. IEEE Commun. Maga. 2024, accepted.
  2. Wang, X.; Shi, Y.; Xin, W.; Wang, T.; Yang, G.; Jiang, Z. Channel Prediction with Time-Varying Doppler Spectrum in High-Mobility Scenarios: A Polynomial Fourier Transform Based Approach and Field Measurements. IEEE Trans. Wireless Commun. 2023, 22, 7116–7129.
  3. Yuan, W.; Li, S.; Wei, Z.; Cui, Y.; Jiang, J.; Zhang, H.; Fan, P. New delay Doppler Communication Paradigm in 6G Era: A Survey of Orthogonal Time Frequency Space (OTFS). China Commun. 2023, 20, 1–25.
  4. Gong, Y.; Li, Q.; Meng, F.; Li, X.; Xu, Z. Data-Driven Deep Learning for OTFS Detection. China Commun. 2023, 20, 88–101.
  5. Thomas, A.; Deka, K.; Raviteja, P.; Sharma, S. Convolutional Sparse Coding Based Channel Estimation for OTFS-SCMA in Uplink. IEEE Trans. Commun. 2022, 70, 5241–5257.
  6. Park, J.; Hong, J.P.; Kim, H.; Jeong, B.J. Auto-Encoder Based Orthogonal Time Frequency Space Modulation and Detection with Meta-Learning. IEEE Access 2023, 11, 43008–43018.
  7. Zhang, C.; Xing, W.; Yuan, J.; Zhou, Y. Performance of LDPC Coded OTFS Systems over High Mobility Channels. ZTE Commun. 2021, 19, 45.
  8. Tian, H.; Zhao, D.; Jia, H. Research on Nonbinary LDPC-OTFS Scheme in High Mobile Communication Scenarios. In Proceedings of 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 27–28 October 2021; pp. 1–6.
  9. Elias, P. Coding for Noisy Channels. In IRE WESCON Convention Record; IEEE Operations Center: Piscataway, NJ, USA, 1955; Volume 2, pp. 94–104.
  10. Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes. 1. In Proceedings of ICC’93-IEEE International Conference on Communications, Geneva, Switzerland, 23–26 May 1993; pp. 1064–1070.
  11. MacKay, D.J.; Neal, R.M. Near Shannon Limit Performance of Low Density Parity Check Codes. Electron. Lett. 1997, 33, 457–458.
  12. Arikan, E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binaryinput memoryless channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073.
  13. Gong, Y.; Li, Q.; Meng, F.; Li, X.; Xu, Z. ViterbiNet-Based Signal Detection for OTFS System. IEEE Commun. Lett. 2023, 27, 881–885.
  14. Mohammed, S.K. Time-Domain to Delay-Doppler Domain Conversion of OTFS Signals in very High Mobility Scenarios. IEEE Trans. Veh. Technol. 2021, 70, 6178–6183.
  15. Schiavone, R.; Garello, R.; Liva, G. Performance Improvement of Space Missions Using Convolutional Codes by CRC-Aided List Viterbi Algorithms. IEEE Access 2023, 11, 55925–55937.
  16. Liu, Y.; Guan, Y.L.; González, D. Turbo BEM OTFS Receiver with Optimized Superimposed Pilot Power. IEEE Trans. Commun. 2023, 72, 601–617.
  17. Xu, Y.; Xiong, H.; Yang, G.; Zhou, H. Carrier Frequency Synchronization of LDPC Coded Transmissions in High Dynamic Environments. IEEE Trans. Veh. Technol. 2024, 1–13. doi: 10.1109/TVT.2024.3383891
  18. Ding, X.; Zhou, K.; Li, G.; Yang, K.; Gao, X.; Yuan, J.; An, J. Customized Joint Blind Frame Synchronization and Decoding Methods for Analog LDPC Decoder. IEEE Trans. Commun. 2023, 72, 756–770.
  19. Niu, K.; Zhang, P.; Dai, J.; Si, Z.; Dong, C. A Golden Decade of Polar Codes: From Basic Principle to 5G Applications. China Commun. 2023, 20, 94–121.
  20. Hasegawa, F.; Taira, A.; Noh, G.; Hui, B.; Nishimoto, H.; Okazaki, A.; Okamura, A.; Lee, J.; Kim, I. High-speed train communications standardization in 3GPP 5G NR. IEEE Commun. Stand. Mag. 2018, 2, 44–52.