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Abstract: Streaming Automatic Speech Recognition (ASR) has gained significant attention across vari-
ous  application  scenarios,  including  video  conferencing,  live  sports  events,  and  intelligent  terminals.
However, chunk division for current streaming speech recognition results in insufficient contextual infor-
mation, thus weakening the ability of attention modeling and leading to a decrease in recognition accu-
racy. For Mandarin speech recognition, there is also a risk of splitting Chinese character phonemes into
different chunks, which may lead to incorrect recognition of Chinese characters at chunk boundaries due
to  incomplete  phonemes.  To  alleviate  these  problems,  we  propose  a  novel  front-end  network - Causal
Convolution Embedding Network (CCE-Net).  The network introduces a causal convolution embedding
module to obtain richer historical context information, while capturing Chinese character phoneme infor-
mation at chunk boundaries and feeding it to the current chunk. We conducted experiments on Aishell-1
and Aidatatang. The results showed that our method achieves a character error rate (CER) of 5.07% and
4.90%, respectively, without introducing any additional latency, showing competitive performances.

Keywords: streaming speech recognition; causal convolution; contextual information; phoneme segmen-
tation

 
 
1. Introduction

With its real-time capabilities, streaming speech recognition has supplanted non-streaming speech recognition in
numerous scenarios,  including spanning video conferencing,  live sports  or  game broadcasts,  speech input methods,
and  terminal  smart  voice  assistants.  Non-streaming  speech  recognition  requires  waiting  for  the  entire  speech  input
before decoding and outputting, whereas streaming speech recognition can gradually output recognition results as the
speech input progresses, without the need to wait for the entire speech input. Therefore, for tasks requiring real-time
interaction with speech input, streaming speech recognition can offer a better user experience.

End-to-end  models  have  become  the  mainstream  in  the  field  of  speech  recognition,  including  connectionist
temporal  classification  (CTC)  [1],  recurrent  neural  network  transducer  (RNN-T)  [2],  and  attention-based  encoder-
decoder (AED) [3, 4]. Among them, CTC and RNN-T models are natural streaming speech recognition models, but
they exhibit significantly lower performance compared to attention-based models. Therefore, CTC and RNN-T mod-
els often introduce attention mechanisms to improve recognition performance, such as using Transformer [3] or Con-
former [4] as encoders. However, traditional attention mechanisms belong to global attention mechanisms, requiring
the entire speech input to be processed and lacking real-time capability. As a result, researchers have begun studying
streaming  attention  mechanisms.  Currently  proposed  streaming  attention  mechanisms  mainly  include  monotonic
attention [5−10],  trigger  attention [11, 12],  and chunk-based attention mechanism [13−17].  The chunk-based atten-
tion exhibits the best recognition accuracy and latency performance.

The chunk-based attention mechanism divides the input into several fixed-size chunks and calculates attention
independently within each chunk. One drawback of this method is that it imposes limitations on the coverage range
of attention, leading to a potential lack of contextual information. To take into account historical contextual informa-
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tion  in  attention  computation,  enhanced  memory  block  methods  [13−15]  introduce  a  memory  bank  to  store  the
embedding information of all previous chunks. Transformer XL [16] and U2++ [17] introduce cache mechanism to
cache the output of previous chunks. These methods can effectively enhance the long-range history context, but may
not model the local information well at the chunk boundaries.

Furthermore,  chunk-based attention also encounters  the issue of  phoneme segmentation.  When the phonemes
corresponding  to  Chinese  characters  are  split  into  different  chunks  at  the  chunk  boundaries,  incomplete  phoneme
information may lead to incorrect recognition of the Chinese characters, as indicated in Table 1. MiniStreamer [18] is
designed to calculate attention while focusing on the current chunk and part of the historical chunks. Although it can
alleviate the issue of phoneme segmentation at chunk boundaries, it introduces significant additional attention com-
putation,  resulting  in  increased  latency.  Tsunoo  et  al.  [33]  employed  overlapping  context  chunks  as  input  to  the
encoder,  providing  ample  contextual  information  for  the  boundaries  of  the  central  chunk.  However,  this  approach
introduces a dependency on future context, leading to increased latency.
 
 

Table 1    Phoneme  representation  of  the  recognition  results.  The  phoneme  combination “jie” is  segmented  into “ji”
and “ie” during chunk processing. The segmented phonemes are assigned to the left chunk and right chunk, respec-
tively. The model recognized and outputted the former. The phoneme combination “dao” is segmented into “d” and
“ao” during chunk processing. The segmented phonemes are assigned to the left chunk and right chunk, respectively.
The cache mechanism is capable of capturing historical contextual information, but its limited local modeling capacity
ultimately led to an erroneous recognition of the right chunk

chunk size Recognition result (U2++)
Annotated text ju wei jia an jie ti gong de shu ju xian shi
4 ju wei jia an ji ti gong de shu ju xian shi
16 ju wei jia an jie ti gong de shu ju xian shi
full ju wei jia an jie ti gong de shu ju xian shi
Annotated text zeng jia hua she cheng shi gong gong jiao tong you xian che dao
4 zeng jia hua she cheng shi gong gong jiao tong you xian che tao
16 zeng jia hua she cheng shi gong gong jiao tong you xian che dao
full zeng jia hua she cheng shi gong gong jiao tong you xian che dao

 

In this paper, we propose a Causal Convolution Embedding Network (CCE-Net) for streaming speech recogni-
tion.  Firstly,  we  introduce  a  causal  convolution  embedding  module  in  CCE-Net,  which  utilizes  causal  convolution
operations  to  extract  complete  phonetic  speech  features  at  chunk  boundaries  and  introduces  richer  local  historical
context  information.  We  inject  the  obtained  information  into  each  encoding  chunk  through  embedding,  avoiding
information redundancy caused by high feature correlations. By employing causal convolution embedding, we effec-
tively  inject  historical  context  information  and phonetic  features  into  each  encoding  chunk,  enabling  the  streaming
speech recognition model to utilize richer context-related information for acoustic modeling and thus improve recog-
nition accuracy. Secondly, to meet the low-latency requirements of streaming speech recognition, we use depthwise
separable convolution for downsampling to reduce computational costs. Our contributions can be summarized as fol-
lows:

1. We propose CCE-Net, a front-end network designed to supplement historical local contextual information for
encoding  chunks  in  streaming  speech  recognition,  enhancing  recognition  accuracy  without  introducing  additional
waiting delay.

2.  We  introduce  a  novel  causal  convolutional  embedding  module  that  utilizes  causal  convolution  to  extract
complete phonetic features at the boundaries of Chinese characters and embeds them to the left boundary of the cur-
rent chunk, reducing recognition errors caused by phonetic segmentation.

3.  Experiments  on  the  AISHELL-1  and  Aidatatang  datasets  demonstrate  that  our  method  achieves  character
error  rates  of  5.07%  and  4.90%,  respectively,  without  introducing  any  additional  latency,  showcasing  competitive
performance.

2. Related Work

In this section, we first presented the current research status of streaming speech recognition and the streaming
attention  mechanism.  We  then  introduced  the  streaming  chunk  strategy  and  related  optimization  for  mainstream
streaming attention mechanisms.  Finally,  to  address  the issue of  insufficient  contextual  information,  we provided a
detailed overview of the causal convolutional neural network.

2.1. Streaming ASR

In end-to-end speech recognition models, CTC and RNN-T are naturally suited for streaming speech recogni-
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tion, while attention-based models are known for their superior performance in non-streaming speech recognition. To
improve  recognition  accuracy,  CTC  and  RNN-T  are  combined  with  attention  mechanisms,  resulting  in  hybrid
CTC/attention and Conformer-Transducer models [19−21] that can perform streaming recognition and bridge the gap
between streaming and non-streaming speech recognition.

In order to ensure real-time processing and meet low-latency requirements, the attention mechanism needs to be
improved for streaming. The streaming attention mechanism is mainly divided into three categories: monotonic atten-
tion, trigger attention, and chunk-based attention mechanism. Monotonic attention mechanisms, including Monotonic
Chunkwise Attention (MoChA) [6] and improved versions [7, 8], and Monotonic truncated attention (MTA) [9, 10] ,
achieve linear complexity and real-time decoding. However, there is a problem of weak model generalization ability
due to the large difference between training and inference. Trigger attention [11, 12] uses a CTC-trained neural net-
work  to  dynamically  partition  the  input  sequence.  The  disadvantage  of  this  method  is  that  it  cannot  guarantee  the
accuracy of CTC boundary partitioning and has high computational complexity. The chunk-based attention [13−17]
is  currently  the  mainstream  mechanism,  which  achieves  real-time  processing  through  a  streaming  chunk  strategy,
offering lower computational complexity and latency.

2.2. Streaming Chunk Strategy

The streaming chunk strategy [13−17] is at the core of chunk-based attention, dividing the input speech stream
into  several  chunks  and  performing  attention  computation  within  each  chunk  to  achieve  streaming  transcription.
However,  it  limits  attention  within  the  chunk,  which  may  lead  to  a  lack  of  contextual  information  and  possible
phoneme segmentation at the chunk boundary, making it difficult to model local information at the chunk boundaries.
To  enhance  the  local  modeling  ability  of  attention  within  the  chunk,  it  is  usually  necessary  to  increase  the  chunk
length  and  add  context  chunks.  However,  this  increases  attention  computation  and  introduces  additional  waiting
delay. To avoid introducing actual future context into the model and introducing additional waiting delay, Chunking,
Simulating Future Context and Decoding (CUSIDE) [24] introduces a simulation module that recursively simulates
future context frames, thereby injecting virtual future context information into the current chunk. Zhao [25] proposes
a multi-delay speech recognition with zeor lookahead that achieves recognition accuracy close to that with lookahead.
Strimel proposes an adaptive non-causal attention transducer (ANCAT) [26], which is trained to adaptively acquire
future  context  while  considering  the  impact  of  accuracy  and  delay.  The  drawback  of  these  methods  is  that  they
require  additional  attention  computation,  leading  to  a  significant  increase  in  computational  costs.  Additionally,
ANCAT still  introduces some future context, and none of these methods specifically address the issue of phoneme
segmentation in Chinese characters at the boundaries of the chunks.

2.3. Causal Convolutional Neural Network

Convolutional  neural  network  (CNN)  have  been  widely  used  in  speech  recognition  models  to  model  local
information. With the rise of streaming speech recognition, ordinary CNN are no longer applicable because they can-
not guarantee the causality of input data in the time dimension. Causal convolution is a type of convolution operation
that  only  considers  historical  information.  It  applies  the  convolution  kernel  only  to  the  current  frame  and  a  fixed
length  of  historical  frames,  without  introducing  any  dependence  on  future  frames  in  streaming speech  recognition.
Causal convolution has been widely used in speech recognition tasks [27, 28] as a replacement for traditional CNN.
In this  paper,  we leverage causal  convolution embedding to  introduce a  more extensive range of  historical  context
information for  speech  chunks.  This  augmentation  significantly  enhances  the  modeling  capability  of  local  depen-
dency relations at the boundaries of these chunks. Furthermore, this approach enables us to effectively capture the pho-
netic feature information that may be missing at the left boundary of the chunks associated with Chinese characters.

3. Method

In this Section, we will first introduce the overall model architecture of the streaming speech recognition in Sec-
tion 1. Then, we will introduce the proposed front-end network architecture and explain the introduced causal convo-
lution embedding.

3.1. Model Architecture

The proposed Causal Convolution Embedding Network (CCE-Net) is situated at the front-end of the streaming
speech recognition, as illustrated in Figure 1. CCE-Net takes an 80-dimensional FBank feature concatenated spectro-
gram as input, encompassing a 2D convolutional downsampling module, a causal convolution embedding module for
extracting  historical  chunk  context  information  and  phoneme features,  and  a  linear  layer  for  feature  mapping.  The
feature  spectrogram processed  by  CCE-Net  is  fed  into  the  shared  encoder  to  complete  acoustic  modeling.  Finally,
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The CTC decoder outputs the streaming recognition results, while the attention decoders rescore the CTC decoding
results to generate more accurate recognition text.
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Figure 1.  Overall framework diagram.
 

3.2. CCE-Net
This section will introduce the specific processing flow of CCE-Net, as shown in Figure 2.
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Figure 2.  Acoustic features processed by the CCE-Net.
 

X = (x1, x2, ..., xL)
For  the  front-end  network  that  applies  the  method  proposed  in  this  paper,  the  spectrogram  feature

 is first  fed into the downsampling layer, and is then processed by two convolutional neural net-
works with downsampling factors of 2, resulting in:

X′ = Downsampling (X) (1)
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Then, it is processed by a causal convolutional neural network:

Xc = CausalConv (X′) (2)

since the baseline model U2++ [17] uses the dynamic chunk training method, a specific chunk size can be selected
according to actual needs, and the smaller the chunk size, the lower the delay. We use causal convolution to extract
historical local features as embedding, avoiding dependence on future frames.

l/chunksize
X′ X′′ = (x′′1 , x

′′
2 , . . . , x

′′
l )

The output of the causal convolution is split into  feature vectors, and then added to the first fea-
ture vector of each chunk in , resulting in . Then, it is processed by a linear layer, resulting
in:

X′′ = Linear (X′′) (3)

X′′Finally, the feature sequence  is fed into the encoder layer by chunks.

3.2.1. Downsampling Module

As a front-end network for speech recognition, CCE-Net will downsample the network to reduce the size of the
spectrogram feature, while also reducing computation and memory usage, and extracting local speech features. In the
downsampling module, we use a 3 × 3 ordinary convolutional neural network as the first layer, with a stride of 2 and
512 channels to capture advanced speech features at different levels. Given the substantial number of input and out-
put channels, we employ a 3 × 3 depthwise separable convolutional neural network as the second layer to amalga-
mate and integrate features from diverse channels via pointwise convolution. This enables the acquisition of spectral
and  phonetic  characteristics  within  the  speech  signal.  Then,  we  employ  two  one-dimensional  depthwise  separable
convolutional neural networks with a kernel size of 3 to extract deeper features, enhancing the model’s representa-
tional capacity.

3.2.2. Causal Convolution Embedding Module

During the encoding stage, we segment the speech feature sequence into equally-sized, non-overlapping chunks,
and the streaming speech recognition delivers recognition results for each chunk. To address the issue of lacking con-
textual information due to chunking, as well  as the incomplete phoneme information at  chunk boundaries,  we pro-
pose a causal convolution embedding module. This module comprises a one-dimensional causal convolution branch,
as depicted in Figure 2, where we set the stride of the convolution operation to the chunk size. Each chunk undergoes
a causal convolution operation to extract the historical context information and complete phoneme features at the left
boundary of the chunk. The duration of the pronunciation of a Chinese character typically ranges from 150 millisec-
onds to 400 milliseconds.  In order to cover all  phonemes at  chunk boundaries,  this  module is  designed to perform
convolution operations on the first frame of the chunk and the last 8 frames of the previous chunk, corresponding to a
385-millisecond duration of the speech. The output after causal convolution operation can be represented as:

xc [t] =
∑8

m=0
w [m] · x′[t−m]+b (4)

t = chunksize×m,m = 0,1,2, . . . ,T/chunksize
x′[t−m]

where , w[m] is the weight value of the convolutional kernel, b is the
bias value,  is the output of the downsampling module at frame t-m. Subsequently, the model's nonlinear fit-
ting capability is enhanced through activation functions while retaining key feature information in the speech signal.
Then,  zero  padding  is  applied  in  the  time  domain  to  ensure  consistency  with  the  size  of  the  original  feature  map,
resulting in the final causal convolutional embedding tensor:

Xcce = Padding
(
Zero,X′c

)
(5)

Zero chunksize−1 X′c Xcwhere  represents a zero tensor of length ,  is the output of  after passing through the acti-
vation  function.  Finally,  the  causal  convolutional  embeddings  and  the  first  frame  of  each  chunk  are  weighted  and
summed to inject historical information and boundary phonetic feature information. The first feature of each chunk
can be represented as:

x′′i = x′i + kx′c j (6)

j = i/chunksizewhere , k is the weight coefficient of the causal convolution embedding.

4. Experiment

In this section, we will introduce the experimental configurations and settings, followed by presenting our abla-
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tion experiments, model analysis experiments, and comparative experimental results, and analyze them in detail.

4.1. Experiment settings
The experiments were conducted on a Linux server with the Linux Ubuntu (16.04) operating system. The CPU

used  was  Intel(R)  Xeon(R)  Silver 4216 CPU  @  2.10GHz,  and  the  GPU  was  NVIDIA  GeForce  GTX  3090.  The
GPU driver  version was 460.84,  and the CUDA version was 11.2.  PyTorch was used as  the deep learning frame-
work  for  the  end-to-end  streaming  speech  recognition  model.  We  conducted  experiments  using  the  wenet  speech
recognition toolkit and used its U2++ model as our baseline model. The ASR input is 80-dimensional filterbank fea-
ture (FBank [26]). To augment the data, we used three-speed perturbation (0.9, 1.0 or 1.1), with the same configura-
tion of SpecAugment [30] and SpecSub [17] as U2++. For the encoder, we used Conformer provided by the wenet
toolkit as the encoder. The number of layers in the Conformer encoder is 16, and the number of attention heads is 4.
The attention decoder contains 3 left-to-right and 3 right-to-left bitransformer chunks. We evaluated the performance
of the proposed method under two decoding methods, ctc prefix beam search and attention rescoring. The weight of
CTC is 0.5 and the weight of reverse is 0.3 when using attention rescoring decoding. We used the Adam optimizer,
and the learning rate was warmed up for 25000 steps. For the causal convolutional neural network, we set the kernel
size to 9 and the stride to 16, consistent with the default chunk length. We employed a weighted averaging method to
reduce model variance, enhance model robustness, and decrease prediction uncertainty.

We evaluated  our  proposed  method  on  two  Chinese  Mandarin  speech  corpora,  AISHELL-1  and  Aidatatang.
We employed a chunk-based streaming speech recognition model, allowing us to use the duration of each chunk as
the metric for measuring latency. When the chunk size is 16, the latency is 640 milliseconds, and when the chunk size
is 4, the latency is 160 milliseconds.

4.1.1. Ablation study

Table 2 shows the parameters, character error rate (CER) and Real-Time Factor (RTF) of two-pass decoding at
different delays before and after the incorporation of CCE-Net.  RTF represents the ratio of the system's processing
time for a speech signal to the actual duration of the speech. A smaller value indicates better real-time performance.
The difference between our method and the baseline model lies in the addition of CCE-Net at the front end of the
baseline model's encoder to optimize the streaming chunk strategy. This network can provide richer historical context
information for the encoding chunks, enhance the local modeling capability at chunk edges. Therefore, compared to
the baseline model, recognition accuracy has been further improved.
  

Table 2    Number of parameters and CER compared to the baseline model. The number in parentheses represents the
chunk size,  which  represents  the  delay.  The  CER results  are  obtained  using  CTC prefix  beam search  decoding and
attention-based rescoring, respectively

Model params delay(ms) CER RTF
attention rescore CTC prefix beam search attention rescore CTC prefix beam search

U2++ 48.3 M 640 5.11 6.04 0.036 0.033
160 5.44 6.57 0.040 0.036

U2++ & 48.5 M 640 5.07 5.85 0.037 0.033
CCE-Net 160 5.29 6.33 0.042 0.037

 

Table  2 presents  the  results  of  the  proposed  method  and  the  baseline  model  under  CTC prefix  beam search
decoding and attention-based rescoring decoding at different chunk sizes. CTC prefix beam search decoding enables
streaming  recognition,  while  attention-based  rescoring  decoding  requires  more  accurate  results  based  on  global
speech output after the first  round of decoding. It  is  evident from the Table 2 that using CCE-Net as the front-end
network  results  in  a  negligible  increase  in  parameter  count,  not  exceeding 2%.  Under  chunk delays  of  640ms and
160ms, our method achieves streaming recognition accuracies of 5.85% and 6.33%, representing reductions in CER
of 3.15% and 3.65%, respectively,  compared to the U2++ model.  This indicates that  the proposed CCE-Net effec-
tively extracts historical context information for the current chunk, improving the accuracy of acoustic modeling and
hence  enhancing  streaming  recognition  accuracy.  Due  to  the  improved  performance  of  CTC decoding,  the  second
round  of  rescoring  decoding  also  demonstrates  enhanced  accuracy,  with  CER  reaching  5.07%  and  5.29%  under
chunk delays of 640ms and 160ms, respectively, both lower than the U2++ [17] model's CER. RTF represents the
ratio of the system's processing time for a speech signal to the actual duration of the speech. A smaller value indi-
cates better real-time performance. As shown in Table 2, our method's RTF is very close to the baseline, indicating
that under similar latency and real-time conditions, our method achieves higher recognition accuracy.

Injecting  contextual  information  into  encoding  chunks  effectively  is  a  key  issue.  We  once  directly  added  a
causal convolutional neural network after the downsampling layer, but the performance improvement was not signif-
icant, especially when the chunk size was small. Considering that high inter-frame correlation may lead to redundant
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feature information, reducing feature quality and resulting in insignificant performance improvement, we adopted an
embedding approach to inject the feature information extracted by causal convolution.

Table 3 shows the comparison of the models’ word error rates between directly adding a causal convolutional
layer  and  using  causal  convolutional  embedding.  In  CCE-Net  v0,  we  directly  added  causal  convolution  after  the
downsampling network to  obtain  historical  contextual  information,  which slightly  improved the accuracy of  online
recognition.  However,  as  the  chunk  size  decreased,  the  improvement  effect  became  worse.  When  we  used  the
embedding method to add the causal convolutional network, the model’s online recognition accuracy was higher than
that  of  directly  adding  causal  convolution,  and  the  relative  CER reduction  was  more  significant  as  the  chunk  size
decreased.  This  indicates  that  using  the  embedding  method  to  obtain  historical  contextual  information  can  more
effectively model acoustic features.
  

Table 3    Comparison of CER between CCE-Net v0, the current version, and the baseline model with
different chunk sizes

Model CER(16) CER(4)
U2++ 6.04 6.57
U2++ & CCE-Net v0 5.94 6.52
U2++ & CCE-Net 5.85 6.33

 

To explore the optimal weight parameters for causal convolution embedding, we conducted experiments with
different weight values k. We conducted experiments by setting the weight parameter k to 2.0, 1.5, 1.2, 1.0 and 0.8,
and observed the  results  as  shown in Figure  3.  When the  weight  parameter  is  1.2,  the  recognition  performance  of
small chunks (chunk size = 4) is slightly better. Conversely, with a weight parameter of 0.8, the recognition perfor-
mance  of  large  chunks  (chunk  size  =  16)  shows  a  slight  improvement.  Larger  weight  parameters  can  lead  to
decreased performance, even worse than the baseline model. Considering the trade-offs, setting the weight parameter
to 0.8 seems to be the optimal choice.
  

6.56 6.66

6.33 6.35 6.35

5.85
5.895.90

6.106.11
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Figure 3.  CER of the model with different weight parameter k.
 

4.1.2. Comparative Experimental Results

Table 4 and Table 5 shows the delay and Character Error Rate (CER) of various representative models on the
AISHELL-1 and Aidatatang. The comparison was made between the results  of streaming output without rescoring
and language modeling, and the second output results that included the addition of rescoring or language modeling.
The chunk size was set to 16, which is equivalent to a delay of 640ms. It can be observed that our method achieves
lower CER results under similar chunk delay conditions compared to other representative models. Existing represen-
tative models often fail to provide sufficient and effective contextual information for encoding chunks. Although they
can  calculate  the  correlation  between  the  current  frame  and  historical  frames  during  attention  computation,  this
method lacks the ability to model local dependencies. In contrast,  our approach utilizes causal convolutional neural
networks  to  model  local  correlations  at  chunk  boundaries,  injecting  historical  context  information  for  each  chunk
through embedding. This enables the capture of missing phonetic features and leads to higher recognition accuracy.
  

Table 4    The CER of various representative models on AISHELL-1
Model Delay(ms) CER(16)

Streaming Transformer[32] 640 12.2
Streaming Conformer[33] 640 6.8
RNN-Transducer 640 8.7
MMA[10] 640 6.60
U2[29] 640 6.30
U2++[17] 640 6.04
U2++ & rescore[17] 640 + ∆ 5.11
WNARS rescoring[34] 640 + ∆ 5.22
U2++ & CCE-Net 640 5.85
U2++ rescore & CCE-Net 640 + ∆ 5.07
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Table 5    The CER of various representative models on Aidatatang
Model Delay(ms) CER(16)

Streaming Transformer[32] 640 7.8
Streaming Conformer[33] 640 6.4
U2 [29] 640 + ∆ 5.29
U2++[17] 640 6.17
U2++ & rescore[17] 640 + ∆ 4.99
U2++ & CCE-Net 640 6.01
U2++ rescore & CCE-Net 640 + ∆ 4.90

 

4.1.3. Improvement in Chinese character phoneme segmentation

Table 6 shows the pinyin of three recognition error examples caused by chunk processing and the pinyin of the
recognition results after applying causal convolutional embedding.
 
 

Table 6    Different phoneme recognition results of two speech segments through the U2++ model [17] and the model
using causal convolution embedding method under different chunk size settings

chunk
size

Recognition result
(U2++)

Recognition result
(U2++ & CCE-Net)

text ju wei jia an jie ti gong de shu ju xian shi ju wei jia an jie ti gong de shu ju xian shi
4 ju wei jia an ji ti gong de shu ju xian shi ju wei jia an jie ti gong de shu ju xian shi
16 ju wei jia an jie ti gong de shu ju xian shi ju wei jia an jie ti gong de shu ju xian shi
full ju wei jia an jie ti gong de shu ju xian shi ju wei jia an jie ti gong de shu ju xian shi

text zeng jia hua she cheng shi gong gong jiao tong you xian che
dao

zeng jia hua she cheng shi gong gong jiao tong you xian che
dao

4 zeng jia hua she cheng shi gong gong jiao tong you xian che
tao

zeng jia hua she cheng shi gong gong jiao tong you xian che
dao

16 zeng jia hua she cheng shi gong gong jiao tong you xian che
dao

zeng jia hua she cheng shi gong gong jiao tong you xian che
dao

full zeng jia hua she cheng shi gong gong jiao tong you xian che
dao

zeng jia hua she cheng shi gong gong jiao tong you xian che
dao

text zhu ban fang shi tu ji lu mei yi ge pao you hui sa ji qing de mei
yi ge shun jian

zhu ban fang shi tu ji lu mei yi ge pao you hui sa ji qing de mei
yi ge shun jian

4 zhu ban fang shi tu ji lu mei yi ge pao you hui cao ji qi de mei
yi ge shun jian

zhu ban fang shi tu ji lu mei yi ge pao you hui sao ji qing de
mei yi ge shun jian

16 zhu ban fang shi tu ji lu mei yi ge pao you hui cao ji qi de mei
yi ge shun jian

zhu ban fang shi tu ji lu mei yi ge pao you hui sao ji qing de
mei yi ge shun jian

full zhu ban fang shi tu ji lu mei yi ge pao you hui sao ji qing de
mei yi ge shun jian

zhu ban fang shi tu ji lu mei yi ge pao you hui sao ji qing de
mei yi ge shun jian

 

For the first example, when the chunk size is 4, the chunk processing separates the phoneme combination “jie”
corresponding to a Chinese character into “ji” and “ie” and assigns them to two different chunks, and even with the
cache mechanism of U2++ [17], it is not recognized correctly. Through analysis of the annotated text corresponding
to the speech, it was found that the phoneme combination “jie” was segmented into the 7th and 8th chunks. However,
when the chunk size is  16,  the phoneme combination “jie” is fully assigned to the 2nd chunk and recognized cor-
rectly without phoneme segmentation. For the second example, the phoneme combination “dao” is also segmented
into “da” and “ao” and assigned to different chunks, resulting in recognition error due to incomplete phoneme infor-
mation.  When the chunk size is  16 or when no chunking is  performed, there is  no phoneme segmentation and the
character is recognized correctly. Our method adds causal convolutional embedding to obtain more contextual infor-
mation for the chunks, enabling the model to recognize them correctly when the chunk size is 4. For the third exam-
ple,  when  the  chunk  size  is  4  and  16,  the  phoneme  combination “qing” is  segmented  into “qi” and “ing” and
assigned  to  different  chunks,  with  the  phonemes  in  the  left  chunk being  recognized  and  outputted.  However,  after
obtaining complete phonemes through causal convolution, they are correctly recognized in the right chunk.

5. Conclusions

This paper introduces a front-end network based on causal convolution embedding - CCE-Net. The experimen-
tal  results  show  that  using  CCE-Net  as  the  front-end  network  can  improve  the  accuracy  of  the  streaming  speech
recognition model  without  introducing additional  delay,  and the  parameter  overhead can be  neglected.  The experi-
ments  on  the  AISHELL-1  and  Aidatatang  datasets  showed  that  the  character  error  rate  of  streaming  decoding
decreased by 3.3% and 2.6% respectively after  the application of  CCE-Net,  with better  improvement as  the chunk
size become smaller. Benefiting from the improved accuracy in streaming decoding, there has been a corresponding
reduction  in  the  character  error  rate  of  re-scoring  decoding.We used  the  U2++ framework  [17]  as  the  baseline  for
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almost all experiments, but theoretically, our method can be applied to all chunk-based streaming speech recognition
models.  In  the  future,  we  will  apply  CCE-Net  to  more  models  to  verify  the  generalization  of  our  method.  As  our
method only introduces richer historical context information and future context information is equally important, in
the  future,  we can combine simulated future  context  methods to  introduce future  context  information for  encoding
chunks. Additionally, we can also introduce a fast attention mechanism to reduce the memory and time overhead of
attention  calculation.  Through these  methods,  we  believe  that  we  can  achieve  improvements  in  both  accuracy  and
speed.
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