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Abstract: Adaptive control is an effective approach for mitigating undesirable deviations in prescribed
closed-loop plant behavior. However, conventional adaptive control methods often exhibit slow
responses in various control tasks. This paper introduces a novel adaptive control method to achieve
fixed-time synchronization in a class of coupled neural networks. We present coupled neural networks
with multiple switching topologies and design a fixed-time adaptive control strategy for this system. Fur-
thermore, we establish a criterion to ensure the fixed-time stability of the closed-loop system. Two
numerical examples are provided to demonstrate the effectiveness and accuracy of the theoretical results.
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1. Introduction

Coupled neural networks (CNNs) have garnered significant attention due to their applications in secure com-
munication and image encryption [1, 2]. Consequently, extensive research has been conducted on the dynamic
behaviors of CNNs [3—5]. Additionally, multi-weighted network models effectively represent real-world networked
systems [6, 7], such as social networks, inter-city population flow networks, and urban public traffic networks [8].
leading to considerable study on CNNs with multiple weights and their synchronization [9].

Synchronization, a collective behavior emerging from the dynamic coupling of units, is prevalent in nature, as
seen in the blinking of fireflies, the beating of heart cells, and the calling of frogs [10]. Due to its importance, numer-
ous studies have focused on synchronization in CNNs with multiple weights, extending to ., synchronization, out-
put synchronization, and lag synchronization [11—13]. However, these synchronization methods often operate over
infinite timescales, which is impractical for applications like robotic and vehicle platooning control [14, 15]. To
address this, finite-time stability was introduced [16] and extended to finite-time synchronization [17-20]. For exam-
ple, Rao et al. utilized impulsive controllers to achieve average stochastic finite-time synchronization for CNNs with
energy-bounded noises [17]. Tang et al. examined finite-time synchronization for CNNs with time-varying delays and
Markovian jumping topologies using an intermittent quantized control strategy [18]. Xu et al. studied finite-time syn-
chronization in privacy-preserving complex networks [19]. Tian et al. developed a delay-independent dynamical
event-triggered controller for finite-time synchronization in neural-type complex networks with intermittent cou-
plings [20]. Finite-time synchronization has also been extended to multi-weighted network models [21-24]. For
instance, Qiu et al. used feedback controllers to address finite-time synchronization in multi-weighted complex net-
works with and without coupling delays [21]. Xu et al. employed feedback and adaptive controllers for finite-time
synchronization in fractional-order complex-valued networks [22]. Zhao et al. addressed finite-time and H., syn-
chronization in CNNs with multiple state and derivative couplings using nonchattering controllers [23]. Wang et al.
discussed finite-time synchronization and H., synchronization for CNNs with multi-state and multi-derivative cou-
plings [24]. However, the settling time for finite-time synchronization heavily relies on the initial states, limiting its
practical application.

To mitigate this limitation, fixed-time stability was proposed [25]. Research has since concentrated on fixed-
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time synchronization for both single-weighted [26—28] and multi-weighted network models [29—31]. For example,
Chen et al. explored practical fixed-time synchronization of uncertain CNNs using dual-channel event-triggered con-
trol methods [26]. Gong et al. investigated finite-time and fixed-time synchronization in coupled memristive neural
networks with time delays using appropriate controllers [27]. Guo et al. studied fixed-time synchronization for CNNs
with intra-state switching and outer coupled matrix switching using feedback control methods [28]. Cao et al. focused
on fixed-time output synchronization in complex networks with multiple state and output couplings using adaptive
control strategies [29]. Liu et al. designed economical control strategies for fixed-time synchronization in multi-
weighted complex networks [30]. Shi et al. proposed criteria for finite-time and fixed-time synchronization in multi-
weighted complex networks using a unified control strategy [31]. Despite these advances, few studies have specifi-
cally addressed fixed-time synchronization for multi-weighted networks.

In CNNSs, practical factors can lead to switching phenomena in the network topology, such as the addition or
removal of links, external interferences in communication channels, and constrained sensing radii within engineering
networks [32]. Consequently, researchers have explored synchronization in both single and multi-weighted network
models with switching topologies [33—39]. For instance, Hu et al. studied sampled-data-based event-triggered syn-
chronization in fractional and impulsive complex networks with time-varying delays and switching topologies [33].
Yang et al. focused on global exponential cluster synchronization for switched fractional-order complex networks
using pinning control strategies [34]. Chen et al. examined synchronization in complex networks with mixed delays
and switching topologies [35]. Yang et al. addressed synchronization issues in time-delayed complex networks with
switching topologies, considering actuator faults and impulsive effects [37]. Wang et al. explored synchronization in
multiple memristive neural networks with switching topologies and parameter mismatches using periodic event-trig-
gered control methods [36]. Additionally, Wang et al. investigated synchronization in multi-weighted complex net-
works under attack [38]. Cao et al. explored adaptive control methods for synchronization in CNNs with switching
topologies [39]. Despite these advancements, few studies have specifically addressed the fixed-time synchronization
problem for CNNs with switching topologies.

Inspired by these studies, this paper focuses on adaptive fixed-time synchronization for a class of CNNs with
multiple switching topologies. The main contributions are shown as follows:

1. Compared with existing works on fixed-time synchronization [26—31], this paper extends these research
results to the case of multiple switching topology.

2. Based on the system model, this paper proposes a novel adaptive fixed-time control strategy and develops a
criterion to ensure fixed-time synchronization for a type of CNNs with multiple switching topologies.

The rest of this paper is organized as follows: Section II provides notations and important lemmas. Section III
presents the main results. Section IV offers two numerical examples, and Section V concludes the paper.

2. Preliminary

2.1. Notations

R, R*, and R denote the set of real numbers, x-dimensional Euclidean space, and the space of x X m real
matrices, respectively. K represents the set of natural numbers. I, € R denotes the identity matrix. G = (V,&)
represents an undirected graph that describes the connectivity interactions among K nodes, where the node set is
V ={vi,va, -+, vk} and the edge setis & C V x V. We define sgn?(x) = sign(x)|x|’.

2.2. Lemmas

Lemma 2.1 (Fixed-time Stability [25]). Consider a nonlinear system defined by
v(b) = f(b,v(D)), b € R+, v(0) = vy, )

where the state vector v € R and the nonlinear function f(b,x): R+ XxR* — R¥. If there exists a continuous and
positive definite function V(x(b)) : R* — R with radial bounds fulfilling:

1. V(x(b)) =0 < x(b) = 0;

2. Any solution x(b) of system (1) satisfies the inequality

V0= = (11 V' (x(b)) + 72V (x(0)))

for parameters 771,12, @1, 2, @ with ¢, > 1 and g < 1,
then the origin of system (1) is said to be fixed-time stable, with the estimated settling time 7(x,) satisfying
1 1

@ + @ ’
mi¢a—-1) n(1-¢ra)

T(X0) S Tmax = Yxo € R*. 2)
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Lemma 2.2 (Holder’s Inequality [40]). For any vector x;==0,(7=1,2,---,K) and parameters ¢; > 1,0 < $p, <1,

then
¢

K é K K 2 K
() =y () =3
7=1 J=1 J=1 J=1

Lemma 2.3 (Kronecker Product [41]). The Kronecker product satisfies the following properties:

Qo) =Q'eQl, (Q o) =Q/'eq;!,
(ﬂQ1)®Q2 =Q ®(BQ2),(Q1 +Q3)®Q2 =QI@Q +Q;93Q,
(QI®Q)(Q3Q) = (Q1Q:) (),

where S refers to a constant. Q;,@,,Qs, and Q4 stand for matrices with suitable dimension.
3. Main Results

3.1. Network Model
Consider a class of multi-weighted CNNs with the switching topology defined by

M K
i50) = —Axy0) + BF(x0) + T+ Y Y ey Tux, (b) +uy(b),

m=1 1=1

3)

“)

where 7=1,2,---,K and m=1,2,--- , M respectively refer to the indices of network nodes and multiple weights
associated with coupling. The vector x; = (xg,Xp, -, X%) € R represents the state of the network. The matrices
A =diag(a,as,- - ,a,) € R and B = (By)x € R are given. The function f(x,(b)) = (fi(x1(b)), f2(x2(b)),"--,
Se(xse )T € R¥ and the vector J = (Jy, 5, ,J,)T € R¥ are also defined. The coupling strength is 0 < ¢,, € R. The
matrix 0 < T, € R indicates the internal coupling matrix. The function p : [0,00) = ¥ = {1,2,--- ,i} represents a

switching signal, and we define p(b) can be described as the switching sequence

P ={(wo,bo), Wi, by1), -+, (Wi, bg), -+ | wr € ¥,k € K},

where w, corresponds to the sequential number assigned to the activated subsystem at time b;. For each

t€{1,2,--+,y}, the outer coupling matrix o™ = (a;)ysx € RE*K is defined as follows:

>0, if(nes,

K
a™ = — E a/g’;;‘, lfj: 1,
p=1

5
pFL
0, otherwise.

The control input #y(b) = (un(d),un(b),--- ,usu(®d)) € R¥. In this paper, it is necessary for the network (4) to
exhibit connectivity, and different coupling forms should possess an identical topology structure. Additionally, we

assume that the function f.(-) (e = 1,2, -+, «) satisfies the following inequality:

[fe(x1) = fe()| =< vyelx) — x2
for any x,, x, and some 0 <y, € R.
1 K
* [
We define x*(b) = X Z]:] x4(b), then one has
1 K
*0) = ;xy(m

1 & | «
=—= Y Axyb)+ e > Bf(x b)) +J
g=1 J=1

1 M K K
tg DD Cn (Z az:") L,5(b)
J=1

m=1 1=1
1< 1<
== A (0)+ - ;B FO00) +7+ 2 ; uy(b),
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where vector x*(b) = (x}(b), x5 (b),- -+, x*(b))" € R¥,
The error state is e,(b) = x,(b) — x*(b) and satisfies

éy(b) = x5(b) - " (b)

1K
= —Axy(b) + Ax*(b) + Bf (x,(b)) — X Z Bf(xy(b))

J=1

M K K
1
+ Z Z Cmaglwrm-xt(b) + l/t](b) - E Z M](b)
J=1

m=1 1=1

1 K
= —Aey(b) + Bf (x,(0) - & > Bf(xsb))

=1

M K K
+) Y cn@ Tleb) +x*(0)) +uyb) - % > us0)

m=1 =1 =1

1 K
= —Ae)0)+ Bf (xj0) = 2 > Bf (ub)

=1

M K 1 K
+3 0 cndp Te,b) +uy(b) - = > uyb),

m=1 =1 J=1

where e(b) = (eI (b), el (b),--+,eL (b)) € RE¥,
Definition 3.1. For any values of ¢(0), if error state e(b) fulfills

li b =0, 0) < Tmax, 5
HTl(relr(lo))lle( N =0,7(e(0))=t Q)

where 7(e(0)) represents a setting time and 7, is a fixed time, then network (4) can achieve fixed-time synchro-
nization.

3.2. Fixed-time Adaptive Control

An adaptive control strategy is designed to ensure that network (4) achieves fixed-time synchronization with the
following representation:

M
uy(b) = — Z Cnk’) (DT e y(b) — 1 5gn” (e,(0)) — 12 5gn™ (b)) (6)

m=1

with the corresponding adaptive law
K5 (0) = cpel (DT es(b)—m1sgn® (K} (0)=7 ) —m258n™ (K7 (0)~77) , ™

where 7=1,2,---,K. Parameters ¢; > 0,0 <¢,<1,5, >0,8, >0, and %7 > 0. The initial value of the adaptive
gain 7(0) > 0.

Remark 3.1. To achieve fixed-time synchronization in a class of CNNs with multiple switching topologies, this
paper proposes the adaptive controller (8) and its adaptive law (9). Considering the system model (4) and control
objective, the first term is specifically devised in the controller (8) and adaptive law (9). According to the definition of
fixed-time stability, we design the second and third terms of the controller (8) and adaptive law (9), enhancing their
robustness based on the principles of robust adaptive control methods.

According to (6) and (8), we can get

1 K
e4(b) = = Ae,(0)+ Bf (x,(b) = 2 > Bf(xy(b)
1

]:
M K M
DN ey Tueb) =k (DT pes(b)
m=1 1=1 m=1
1 K
= msgn® (€,0)) = 1sgn® (e 0) = 2 > Juy(h).
7=1

Theorem 3.1. If there exist some positive parameters »™=diag(x",%5,-- -, #%) such that following inequality holds
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M
Ix®(-2A+BB" +$)+2) ¢, l(@™ -2"®T,] <0,

m=1

then network (4) is fixed-time synchronization by using controller (8) and the settling time function is globally
bounded by 7., defined by

1 1
~ + k
m(@i—1)  m(l-¢)
where 7; = min {2 771(MK) - 2 T]](KK) 2 } .
Proof. Construct the following Lyapunov function for network (4)

V(b) = Z T(b)e;(b)+ZZ HOE

m=1 g=1

Tmax R

Based on (13), one derives

V(b) = ZZej(b)e](b)+ZZZ Kby — 7 k2 (b)

m=1 g9=1

= 2Ze§(b> ( ~Ae,(0) + Bf (x,(0) ~ ZBf(xy(b))

]_

M K
D) ' Te (b))~ Z k(D) e5(b)

m=1 1=1 m=1

1 K
~misgn® (e,(0)) = masgn® (eb) - Zuy(b)>

=1
M K M K
O ACEA NI IAUE i
m=1 g=1 m=1 g=1
+ZZZcm (k') =2 el ()T e (b)
m=1 J=1

K
=2 Z ey (0) ( —Aey(b) + Bf(x5(b)) = Bf(x* (b)) + Bf (x* (b))

M
-= Z Bf(x,(b)) + Z Z ' Te ()= ek (DT e s(b)

m=1 1=1 m=1
1 K
—115gn’ (ey(0)) —ma5gn’ (ey(b)) - X ; M](b)>
¢z+1

—mZZ}k"’(b) 2 ZUzZZIW(b)

m=1 g=1 m=1 g=1

+2 Z Z Co (K2(b) = 21) €7 (D) e(b).

m=1 7=1

According to the assumption of function f(-), we can obtain
K K
23 el OB (xs0) — f* DN el (b) (BB +7) es(b),
7=1 7=1

where ¥ =diag(y3,v3, -+ ,y2) € R,
Then, one has
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K K
> o) =D (x0)~x*(0)
J=1 J=1
K 1 K
=y (xj(b) - ny(b)>
7=1 7=1
K K
=D x0)=> xb)
7=1 7=1

=0.
From (16), we can derive
K 1 K 1 K
> el (Bf(x*(b)) IO uy(b)> =0.
J=1 J=1 J=1
With the help of (3), one has
K K
D el b)sgn’ (eyb) = Y €] (b)sign(es(h))le; 0"
=1 =1
J 7K )
= DD lex)!
=1 r=1
K K .
=3 @on™
J=1 r=1
/x o
Bum?<§}hwmo :
J=1
M K M K ’ st
PP LACREA D Sy (ORI
m=1 7=1 m=1 g=1
M K @
= (MK) }:}:wﬂm—%wﬂ :
m=1 7=1

K K
> ey bysgn® (e, b)) = Y ef (h)sign(es(b))le;(b)I*
7=1

7=1
K K
= > lex )

J=1 r=1
K K
=3 N @on™
=1 r=1
N an
> (Zeﬂb)e](b)) ,
M K M]_]K o
P ACEEA D S CACET AN
m=1 j=1 m=1 y=1

91

>[ﬁk

m=1 9=1

(k5 (b) - 7?';’)2]

Substituting (15), (16), and (18) into (14), we can get
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K M
VOIS D ef ) <—2A +BB +7-2) c,,,;zg"rm> e,(b)
J=1

m=1

441

M K K K 7
£33N e, el O) e (b) — 2 (Z e]T(b)e](b)>
m=1 7=1 =1 J=1

Likal dy+1
2

K T M K 2
— 2 (kK) (Ze§ <b>e]<b>> ~21, [Z Z(k;"(b)—%;”f]
I=1 m=1 g=1

6+1
7

M K 2
ZZ(k’;(b)—ﬁ;’)z]

m=1 g=1

— 2 (MK) =

M
= e’ (h) {IK ®(-2A+BB" +9)+2) ¢, [(@™ —%™"&T,] } e(b)

m=1
o1+1

K 2
— 2V (b) -2 (kK) (Z e§<b)ey<b>>

J=1
9y +1
2

~2(MK) =

M K
PPCAOE W]
m=1 9=1

According to Theorem 3.1 and (3), one obtains from (19) that

py+1
2

K
VS -2V (0) -2 (kK) T (Zd(b)eﬂb))
J=1

o1+

M K
PICAC) —2;’)2]

m=1 g9=1

— 2 (MK) =

< -2V 0) -2V (),

Consequently, we conclude that V(b) = 0,1=7,,,x and the estimated settling time can be derived as
1 1

— + .

(g —1)  m(l-¢,)

Then, one can prove that lim,_, .oy lle(D)|| = 0, |le(b)l] = 0, =T pax.
Remark 3.2. This paper designs a novel adaptive controller (8) to assist system (4) in achieving fxied-time synchro-
nization. Note that the proposed adaptive controller (8) can be applied in other nonlinear systems, such as vehicle pla-
tooning system [ 15] and memristive neural networks system [37].
Remark 3.3. This main difficulty in dealing with fixed-time synchronization for CNNs with multiple switching
topologies by using the adaptive fixed-time control method comes from the switching topology, multiple weights and
design of adaptive fixed-time control strategy.

7(€(0)STimax =

4. Numerical Examples

To illustrate the theoretical results and the effectiveness of the designed fixed-time adaptive control strategy, this
section provides three numerical examples.
Example 4.1. This example considers a class of CNNs with multiple switching topologies, where the network con-
sists of five nodes with three dimensions each. Furthermore, we select a commonly used activation function [11]:

5
ib) == Ax,(0) + Bf (x,0) + T +03 Y ahTyx, ()

1=1
5
+0.5) a3 Tox,(b) +uyb),
=1

where 7=1,2,---,5,0=1,2.A = diag(0.7,0.5,0.8),J = (0.3,0.5,0.4)".T"; = diag(0.8,0.8,0.9),I", = diag(0.4,0.5,
0.7). fo(x) =0.25(x+ 1] = |x—1]),e = 1,2, 3. The matrices are chosen as

70f13


https://doi.org/10.53941/ijndi.2024.100018

1JNDI, 2024, 3, 100018. https:/doi.org/10.53941/ijndi.2024.100018

02 02 02
B=| 01 01 02 |. ®)
03 0.1 02

Then, there are four probably topologies a'!',a'?,a?!, and @*?, and could be defined by a'! — a'? —
a"' - - and @' - a*? - a®' — - The corresponding outer matrices are

-05 03 0 02 O
03 -06 03 0 0
o = 0 03 -04 O 0.1 ,
02 0 0 -03 0.1
0 0 01 01 =02
-06 04 O 0 02
04 -07 0 03 0
at? = 0 0 -02 02 0 ,
0 03 02 -05 0
02 0 0 0 -02
-08 04 0 04 O
04 -05 0.1 0 0
o> = 0 01 -03 0 02 ,
04 0 0 -07 03
0 0 02 03 -05
-07 03 0 0 o
03 -04 0 0.1 0
= 0 0 -02 02 0
0 01 02 -03 0
04 0 0 0 -04

According to the definition of f.(-)(e = 1,2,3), we can obtain y,. = 0.5. By exploiting the YALMIP toolbox,
we can obtain the following matrices:
Under "' and o®!

%' =diag(3.9739,4.0064,4.0740,4.0202,4.0728),
%% =diag(3.7957,3.8304,3.8989,3.8420,3.8956).

Under o'? and o>?

x' = diag(3.6922,3.7243,3.8537,3.7737,3.8159),
%* = diag(3.5265,3.5609,3.6904,3.6106,3.6512).

We select the parameters 17, =2, 17, = 3, ¢ =2, and ¢, = 0.6. The fixed time is calculated as T,x = 11.4399
seconds. The simulation results are displayed in Figures | and 2. Figure | shows that the values of |le,(b)|| decrease to
zero before the fixed time 7. As depicted in Figure 2, the values of k}'(b) converge to positive bounded values.
Consequently, the network (22) achieves fixed-time synchronization, as validated by Theorem 3.1 and controller (8).

8 .
—ley(b)l
7 B
€5

6 —lles(b)] T
3 7595(5)” |
4

3

2

‘max

1

0

0 5 10 15 20 25

Figure 1. Evolution of |le;(b)lI, 7= 1,2,---,5 for system (22) via controller (8) with settling time 7., = 11.4399 s.
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4
3.

=2

3
1
0
0 5 10 15 20 25
4 N = —_— = o
3t/

Z 2
].
0
0 5 10 15 20 25

b/s

Figure 2. Evolution of adaptive gains &7 (b).m = 1.2 of controller (8).

Example 4.2. This example studies a class of CNNs with multiple switching topologies, where the network is com-
posed of five nodes, each with three dimensions. Moreover, we select fan(-) as the activation function [13]:

%,(0) = = Axy(0) + Bf (x,(0)) + J +O. 4Za T x,(b)

=1

+0. 6Za Tox,(b) + 1y (h),

where 7=1,2,---,5,0=1,2. A =diag(0.3,0.6,0.2),J = (0,0,0)".T'; = diag(0.3,0.4,0.3),T, = diag(0.2,0.3,0.4).

fe(x) = tanh(x), € = 1,2,3. The matrices are chosen as

04 01 03
B=| 02 03 03
0.1 02 05

Then, there are four probably topologies a'!',a'?,a*!, and @*?, and could be defined by a'! — a'? —

a"' > and @®' - a** - a*' - ---. The corresponding outer matrices are

—0 3 0 02 0
—o 2 0.1 0 0
ol = o 1 -02 0 0l
0 -03 0.1
0.1 01 =02
—0 3 0.1 0 0 02
—0 5 0 04 0
a2 = -03 03 0
03 -07 0
0 0 -02
0 04 O
—2 5 1.1 0 0
o = -14 0 0.3
0 -09 05
03 05 -08
—1 7 0 0 14
—o 9 0 06 0
a*? = -05 05 0 )
05 -1.1 0
0 0 -14

According to the definition of f.(-)(e = 1,2,3), we can obtain y. = 1. By using the YALMIP toolbox, one

obtains the following matrices:
Under "' and o*!
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Under o'? and o>?

%' =diag(5.8466,5.7193,5.9503,6.0387,6.0863),
%* =diag(6.0396,5.8595,6.1790,6.3101,6.3729).

%' = diag(6.0080,6.1265,6.2717,6.0396,6.1064),
%* = diag(6.2220,6.3973,6.5996,6.2831,6.3571).

We choose parameters 17; = 3, 17, =3, ¢1 = 1.5, and ¢, = 0.3. The fixed time is calculated as 7,,,x = 3.54671
seconds. The simulation results are displayed in Figures 3 and 4. In Figure 3, it is observed that the values of |le,(b)||
approach zero before the fixed time Timax. As depicted in Figure 4, the values of k7' (b) converge to positive bounded
values. Consequently, the network (24) achieves fixed-time synchronization according to Theorem 3.1 and controller

@®).

8 .
— lley(b)l
| —i
6 e(b)
— lley(b)l
5 —lles(B)l
Tmax
4
3
2
1
0
0 5 10 15 20

25

Figure 3. Evolution of [le;(b)Il,7=1,2,---,5 for system (24) via controller (8) with settling time a = 3.546715s.

6
4
=2
% 5 10 15 20 25
8
T4y
2
% 5 10 15 20 25
b/s

Figure 4. Evolution of adaptive gains &7 (b),m = 1,2 of controller (8).

Example 4.3. To demonstrate the superiority of this paper’s control strategy, we compare our adaptive fixed-time
control (AFTC) approach with the node-based adaptive control (NBAC) strategy [42] and the adaptive proportional-
integral control (APIC) method [11]. For fair comparisons, we use the same parameters as in Example 4.2.

The simulation results are shown in Figures 5 and 6. In Figure 5, AFTC exhibits a faster convergence speed
compared to NBAC and APIC. As depicted in Figure 6, the adaptive gains of APIC are the lowest among the meth-
ods. However, APIC cannot ensure that the system error remains at lower values. Therefore, our control method

demonstrates superior performance.
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Figure 6. Evolution of adaptive gains 7 (b),m = 1,2 of AFTC, NBAC, and APIC.

5. Conclusion

In this paper, we have tackled the issue of fixed-time synchronization for a class of CNNs with multiple switch-
ing topologies. We derived a theoretical criterion to guarantee fixed-time synchronization and developed an adaptive
fixed-time control strategy. To validate our findings, we presented two numerical examples demonstrating the cor-
rectness and effectiveness of the proposed approach.
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