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Abstract: Humanitarian organizations face a rising number of people fleeing violence or persecution,
people who need their protection and support. When this support is given in the right locations, it can be
timely, effective and cost-efficient. Successful refugee settlement planning not only considers the sup-
port needs of displaced people, but also local environmental conditions and available resources for ensur-
ing survival and health. It is indeed very challenging to find optimal locations for establishing a new
refugee camp that satisfy all these objectives. In this paper, we present a novel formulation of the facility
location problem with a simulation-based evolutionary many-objective optimization approach to address
this problem. We show how this approach, applied to migration simulations, can inform camp selection
decisions by demonstrating it for a recent conflict in South Sudan. Our approach may be applicable to
diverse humanitarian contexts, and the experimental results have shown it is capable of providing a set of
solutions that effectively balance up to five objectives.
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1. Introduction

Forced displacement is the movement of people forced to flee from their home or origin countries due to con-
flict, violence, persecution, or other push factors. It has become increasingly prominent in recent years with at least
117.3 million people forcibly displaced worldwide in 2023 (UNHCR: 2024 [1]). Over a third of these people crossed
borders to seek protection and/or asylum (UNHCR: 2024 [1]).

Refugee camps are a form of settlement for protecting forcibly displaced people and ensuring their survival and
health. Establishing camps in the most suitable locations is vital for enabling timely, effective, and cost-efficient
humanitarian support, but also challenging. Estrada et al. [2] have shown how camp selection can be presented as an
example of the generic facility location problem (FLP). The FLP has been widely studied in humanitarian logistics (in
the context of earthquakes [3], hurricanes [4], floods [5], and epidemics [6, 7]) to determine the optimal locations of
distribution centers, warehouses, shelters, and medical centers. Its application to camp placement selection is impor-
tant due to the rapid emergence of new conflict situations across the globe, and the resulting need to effectively assist
forcibly displaced people in their country of asylum.

Applying the FLP in this context is challenging because refugee camp selection decisions are made in a com-
plex political and physical environment, and often have many uncertain elements (e.g. due to the unpredictable nature
of the nearby conflict). For successful refugee camp planning, decision-makers should consider not only commonly
used objectives for FLPs such as travel distance, demand (i.e., the number of affected people) coverage and the facil-
ity usage rate. They also need to account for local environmental conditions, such as site accessibility and optimal
food availability for ensuring survival and health. To satisfy the different needs of multiple stakeholders (govern-
ments, non-governmental organizations, and asylum-seekers/unrecognized refugees) we formulate the FLP as a many-
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objective optimization problem (MaOP), i.e., one that optimizes more than three objectives simultaneously.

A number of approaches for many-objective FLP have been proposed, which include traditional e-constraint [§]
and goal programming [9] approaches. More recently, metaheuristic optimization algorithms have been adopted for
solving different MaOPs. Some representatives include the evolutionary algorithm (EA) and the particle swarm opti-
mization (PSO) algorithm, which have been widely employed in many fields (e.g., engineering [10, 11], healthcare
[12, 13], logistics [14], and finance [15]). EAs are popular population-based metaheuristic optimization algorithms,
which have been demonstrated to be effective in solving complex problems including MaOPs because of their ability
to approximate a set of optimal solutions in a single run. Furthermore, EAs have been extensively used for tackling
FLP in emergency management after natural disasters (e.g., hurricanes, earthquakes, and floods) [16].

Here we propose a simulation-based evolutionary many-objective optimization approach to solve the camp
location problem in the context of forced migration. This problem is formulated as an MaOP involving five objec-
tives, i.e., minimizing traveling distance, maximizing the number of camp arrivals, minimizing the amount of excess
capacity, maximizing food security, and maximizing the accessibility level. In the proposed approach, the employed
EA searches for the possible suitable locations that satisfy these objectives calculated by an agent-based simulation
(Flee [17]) and external data sources. The proposed approach takes advantage of the searching abilities of population-
based meta-heuristic optimization approaches and the forecasting ability of agent-based simulation for the move-
ments of asylum-seekers/unrecognized refugees. In contrast to single-objective optimization approaches converting
the many-objective problem into a single-objective one, the employed multiobjective EAs (MOEAs), which search
for the whole Pareto front of an MaOP, have been demonstrated to be more promising as they can help the search
jump out of the local optima [18]. To show its performance, we conduct a case study of a recent South Sudan con-
flict and the experiments are based on popular MOEAs and a baseline algorithm. The experimental results demon-
strate that the proposed approach can provide a set of solutions that well balance the aforementioned objectives.

The rest of this paper is organized as follows. Section II reviews the related work. Section III presents the
description and definition of the problem. Section IV gives the details of the proposed simulation-based many-objec-
tive optimization approach. The results are shown and discussed in Section V. Finally, Section VI concludes the

paper.

2. Related Work

The camp location problem is often both essential and complex for humanitarian organizations in aid deploy-
ment to consider. Existing literature that can inform this consideration generally falls under two categories: 1) model-
ing the movement of asylum-seekers/unrecognized refugees [19], and 2) FLP in humanitarian logistics [3, &, 9, 20].
In this paper, we aim to address the camp location problem for asylum-seekers/unrecognized refugees. This problem
can be formulated as an MaOP.

Current approaches related to many-objective FLP can be roughly classified into two groups. One group refers
to traditional single-objective optimization approaches, e.g., the weighted sum approach, the goal programming
approach, and the e-constraint [8, 9, 20]. Manopiniwed and Irohara [20] adopted a normalized weighted sum method
to select the optimal locations of the local relief distribution centers for disaster response, and showed that it could
provide a set of solutions that balance the two objectives, e.g., minimizing the total cost of opening distribution cen-
ters and shipping relief supplies as well as minimizing the maximum response time. In addition, Barzinpour and
Esmaeili [9] developed a goal programming approach to solve a multiobjective location-allocation model for the
preparation planning phase of disaster management, with the objectives of maximizing the cumulative coverage of
the population, minimizing the facility setup costs, and minimizing the total transportation costs, equipment holding
costs, and shortage penalty costs. Similarly, Hallak et al. [21] proposed a weighted-goal programming approach to
seek optimal shelter locations for internally displaced persons in Idleb, Syria. The objectives of this model include the
maximization of demand coverage and humanitarian vulnerability criteria, and minimization of cost. Furthermore,
Cilali et al. [8] presented an augmented e-constraint method for refugee resettlement, and considered four objectives
simultaneously, i.e., maximizing the number of resettled refugees, minimizing the total cultural distance, minimizing
the cost of preparing resettlement locations, and minimizing the weighted travel distance.

The other group includes the optimization approaches aiming at searching for the whole Pareto front, so that the
decision-maker could select the solutions depending on their preferences. Atta et al. [22] developed a novel Pareto
optimality-based multiobjective harmony search algorithm (MOHSA) to address a multiobjective variant of the max-
imal covering location problem, with the objectives of maximizing both the demands and the preferences of cus-
tomers served by the opened facilities. The results showed that MOHSA is comparable with the traditional MOEA,
i.e., non-dominated sorting genetic algorithm II (NSGA-II) [23], regarding performance metrics and statistical tests,
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and requires less runtime than NSGA-II. Ghasemi et al. [3] employed the classic NSGA-II and a multiobjective vari-
ant of the PSO algorithm to tackle a multiobjective location-allocation problem for earthquake evacuation planning,
aiming at minimizing the total cost of facilities and minimizing the amount of shortage of relief supplies. Moreover,
Wang et al. [24] designed a dual-population based EA to deal with a FLP under the uncertainty of facilities, involv-
ing the objectives of maximizing the coverage reliability, minimizing the response time, and minimizing the cost.
Furthermore, some heuristics have been combined. For example, Wang et al. [25] proposed an ISA-PSO algorithm,
where the ISA (an improved simulated annealing algorithm based on genetic algorithm) is combined with the PSO to
determine the selection of emergency shelters, medical centers, and the distribution centers for disaster management,
with the aim of minimizing the evacuation distance, cost, and unmet resources.

We consider the second group because the optimization approaches in the first group may need to provide some
prior knowledge of the problem, such as the weights (i.e., relative importance) between the objectives in the weighted
sum approach. Such knowledge can be difficult to access. For example, the decision-maker is often not confident
enough to specify the weights (i.e., to quantify relative importance) between the objectives. Moreover, a very recent
study suggests that even if the weights can be accurately specified, the optimization approach searching for the whole
Pareto front is more promising as it can help the search jump out of the local optima [18].

The research in many-objective FLP can be further explored by investigating the optimization approach for
many-objective FLP under uncertainty. Due to the uncertain nature of FLP in humanitarian operations, such as the
randomness of large-scale asylum-seeker/unrecognized refugee movements, it is difficult or even impossible to obtain
reliable demand information. Recently, a number of stochastic or robust models for FLPs under uncertainty have
been presented [26], but few of these models consider the uncertainty of the number of asylum-seekers/unrecognized
refugees arriving in destination countries.

Some studies have developed different agent-based migration modeling frameworks, which are popular simula-
tion approaches for modeling the movements of displaced persons [19]. In this study, we formulate objective func-
tions related to asylum-seekers/unrecognized refugees according to the simulation results. Using simulation to calcu-
late objectives has been successfully applied to many fields, such as healthcare, logistics, supply chain, environment,
and manufacturing [27].

3. Problem Description and Formulation

3.1. Problem Description

We consider a FLP in which humanitarian organizations or governments locate a new camp to satisfy the needs
of displaced persons. Considering the uncertain nature of FLP in humanitarian operations, such as the randomness of
large-scale movements of asylum-seekers/unrecognized refugees, it is difficult or even impossible to obtain reliable
demand information. Some models have been developed to predict the movements of asylum-seekers/unrecognized
refugees. For example, the Flee agent-based simulation model provides a way of rapidly facilitating simulation devel-
opment when a conflict occurs and forecasting the distribution of asylum-seekers/unrecognized refugees in different
camps [19]. The FLP is constructed based on the Flee simulation for incorporating the uncertainty related to forcibly
displaced people, and it consists of five main steps. In the first step, we create a source country that involves the
points representing conflict zones and towns along with all possible links between these points. In the second step, we
place a point (i.e., camp) at the given coordinates in a destination country. In the third step, we create a link between
the camp and its nearest location in the source country. In the fourth step, we run the Flee simulation, and finally, in
the fifth step, we assess the objectives related to individual travel distance and the number of people who arrived in
the camp during the simulation period.

Figure 1 illustrates the route network for a basic FLP. It contains three types of points, which include conflict
zones, towns, and camps, as well as those links between those points, i.e., interconnecting roads. The position of a
point is represented by the coordinates (x,y) associated with the point. Note that the x and y coordinates of the camp
are two input parameters of the simulation module of our approach.

The following decision shall be made for our model: given a source country with a set of locations (including
conflict zones and multiple towns) and all possible routes between these locations, where is the best camp location in
the destination countries?

Assumptions for the model are as follows:

1) The locations of conflict zones and towns in the source country are given.

2) Forcibly displaced people (known as agents in the Flee simulation) are spawned in the conflict zone(s) and
the number of agents in each conflict zone is given.

3) The time period for a conflict situation is assumed to be known.
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4) The destination countries are represented by a continuous region.

5) Camp capacity, i.e., the number of people that the camp can support, is limited.

6) Agents move from place to place for each time step, according to predefined rules in [19] (e.g., movement
speed is a constant value, and the conflict zones and towns can be visited several times, that is, the returns and cir-
cling are allowed during traversing process).

7) The agents stop moving once they arrive at the camp.

Y O Conflict zone
O Town
[l Camp
(0,100) (100,100)
s
Squareland
(0,0) (100,0) (200,0)
O &
X
0 100 200

Figure 1. An illustration of the route network of a basic FLP which includes five points (i.e., one conflict zone, three
towns, and one camp to be placed) and links (i.e., interconnecting roads) between these points, which is adapted from
Xue et al. [28].

3.2. Problem Formulation

1) Notations: The key notations are summarised as follows:

® Set

— J: Set of candidate sites, indexed by j.

e Parameters

— a: Total number of agents in all conflict zones.

— k: Number of potential camp sites.

— c¢: Camp capacity (unit: agent).

— n: The total number of new camps that will be placed and open.

— T': Simulation period or conflict period (unit: day).

— a;: Site accessibility score at site j € J.

— s;: Food insecurity score at site j € J.

e Decision variables

— j: Index of a candidate site.

e Dependent variables

— L j;: Set of agents in camp Jj at time ¢ based on the simulation predictions, indexed by i.

— dyim, j;:: The distance traveled by an agent i in the new camp at the candidate site j at time ¢ based on the
simulation predictions.

— Ngim,j- The number of agents served by the new camp at the candidate site j at time ¢ based on simulation

predictions.
2) Mathematical formulation: The MaOP can be formulated as follows:
Ny
" dsim i,J,
minimize : fi(j) = M O
nsim, 5T
maximize : fo(j) = Agim ;7 @
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T
L . 1 1 C— Ngim,j
minimize : f3(j) = 2zt €= Mimir |

3)

T
minimize : f3(j) = s; 4)
maximize : f5(j) = a; (5)
subject to
1< j<k 6)

where j is known as the decision variable from the feasible region in the decision space J, and z = f(j) =
([, ())s- -+, f5()) denotes a five-dimensional objective vector in the objective space ©.

The first objective function (equation (1)) minimizes individual travel distance. Specifically, the average dis-
tance traveled by each arriving agent in a destination camp at the end of the simulation should be minimized. This
objective is related to the efficiency of allocating displaced persons to the new camp.

The second objective function (equation (2)) maximizes the number of successful camp arrivals. Specifically,
the number of people in the new camp at the end of the simulation should be maximized. This objective function can
be easily transformed into a minimization problem by multiplying —1.

The third objective function (equation (3)) minimizes the amount of idle capacity in the new camp. Specifically,
the average value of idle camp capacity over the whole simulation days should be minimized. It should be noted that
in this paper we allow more people to enter a camp than its predefined camp capacity. If the idle capacity of the new
camp (¢ — ngn,jr ) at specific time 7 is a negative value, we simply take its absolute value.

The fourth objective (equation (4)) minimizes the food insecurity level of a possible site (i.e., s;). In other
words, we aim to place the camp in a location with maximum food security, so that provisioning food is cheap and
easy. We utilize the average food insecurity severity level of a site over a period and prioritize the candidate site with
lower severity levels. The lower bound of s; = 1 and the upper bound of s; = 4.

The fifth objective (equation (5)) maximizes site accessibility (i.e., a;). This objective is related to how easily
people access the candidate site and how easily humanitarian organizations transfer humanitarian resources to the site.
The value of site accessibility is a prioritization score regarding many factors, such as topography, soil and infras-
tructure. The lower bound of a; = 0 and the upper bound of a; = 1. A score that is close to one implies easier access
(e.g., a site with adequate road infrastructure), whereas a score of zero implies completely unreliable (e.g., wetlands,
steep slopes, mountainous areas, narrow valleys and ravines).

Constraint (6) restricts the search space of the MaOP (i.e., a set of k possible sites).

Given two solutions u;,u, € ® of an MaQOP, solution u; is said to Pareto dominate (or simply dominate) solu-
tion u, if there is at least one objective on which u; is strictly better than u, and for the other objectives u; is at least
as good as u,. A solution u* is said to be Pareto optimal if there is no solution u € ® that dominates u*. All such
solutions are called Pareto-optimal (or nondominated) solutions, and these solutions in the objective space constitute
the Pareto front of the problem. Considering this MaOP is computationally expensive due to the Flee simulation, we
attempt to search for a fixed size of solutions approximating the Pareto front rather than the whole Pareto front.

Note that in this paper we only focus on one camp to be established (i.e., n = 1). We can further extend the
MaOP to place multiple new camps, and jointly tackle the problem for all new camps by utilising a set of decision
variables (denoted as an n-dimensional decision vector j = (ji, ja,. .., jx), Where each decision variable corresponds
to a specific new camp). For the extended problem, we will consider all agents who have reached the new camps
when calculating the values of the first three objectives.

In addition, the differences between our problem and P-median, P-centre problems, and covering problems are
discussed in Sections II and III of the supplementary information.

4. Simulation-based Many-Objective Optimization Approach

We have designed a simulation-optimization framework, which integrates the Flee simulation as well as exter-
nal data sources into an MaOP. Our framework consists of three stages: (1) optimization, i.e., execution of a many-
objective optimization algorithm, (2) simulation, i.e., execution of the Flee simulation using a set of candidate camp
locations as input parameters, (3) dataset construction, i.e., collecting food insecurity and accessibility data related to
each candidate site.

1) Optimization with evolutionary algorithms: For the optimization part, we employ four representative
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MOEAs, including a Pareto-based algorithm, i.e., NSGA-II [23], two decomposition-based algorithms, i.e., NSGA-III
[29] and MOEA/D [30], and an aggregation-based algorithm, i.e., BCE-MOEA/D [31]. The general process of an
MOEA is as follows. To start with, a set of solutions (a population) are randomly generated. Then, a fitness assign-
ment method is employed to sort the population. Each solution is assigned a rank value as its fitness value. Next, a
mating selection operation is used to select promising solutions as parents, followed by variation operations to create
offspring. Finally, the environmental selection is applied to preserve N best solutions from the combined population
(i.e., the current population and its offspring) as the next-generation population. This evolutionary process continues
until a stopping criterion (e.g., the maximum generations) is met. For an MOEA, two important components, i.c., the
representation of a candidate solution and the calculation of objective values, are described as follows.

A candidate solution of the MaOP is represented as a chromosome on the basis of a grid-based spatial repre-
sentation strategy. Specifically, the entire study area is divided into a number of fine spatial grids as shown in Figure
2. Each grid in the neighboring countries (blue areas) represents a unit for establishing # new camp(s), and the total
number of possible sites is the number of grids in the blue area. The spatial location of each grid cell is denoted as a
pair of longitude and latitude coordinates corresponding to its centroid. Given a set of all possible locations, the chro-
mosome is sequentially encoded by the index(es) of n selected location(s). It should be noted that in this paper, we
consider the MaOP with one new camp to be set up (i.c., n = 1). In addition, we reduce the search space by remov-
ing two types of unsuitable locations from the location set, which include those locations with a slope above 10% and
those locations covered by water throughout the year in the form of rivers, lakes or oceans.
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Figure 2. Spatial representation and encoding strategy developed for MOEAs.

The objective calculation consists of two parts. For objectives related to the movements of forced displaced per-
sons (equations (1)~3)), the objective values for each candidate solution in the current population (a solution set) are
derived from the Flee simulation. The Flee simulation takes the (camp) coordinates, which correspond to each candi-
date solution, as input parameters, and then assesses and outputs the values of the first three objectives for each can-
didate solution. For the objective with respect to food insecurity (equation (4)) and the objective related to site acces-
sibility (equation (5)), the objective values are derived based on open sources.

2) Migration simulation with Flee: Since the FLP in forced migration involves uncertainty in demand (i.e., the
number of people in need), it is difficult to directly solve our mathematical model without any explicit equations of
these objectives in equations (1)~(3). Therefore, we evaluate those objectives related to people's movement (i.e., indi-
vidual travel distance, the number of successful camp arrivals, and average idle capacity over the simulation period)
based on the Flee simulation [19].

The Flee simulation code (http:/github.com/djgroen/flee) is used to forecast the number of arriving agents at a
candidate camp, given a particular conflict instance. According to [19], to start with, agents (i.e., forcibly displaced
people) are spawned in the conflict zone(s). Then, agents move from place to place for each time step (i.e., one day),
according to predefined rules. These rulesets can be roughly divided into two parts. The first rule (known as move
chance) is concerned with the probability of traversing a link with a maximum speed defined by max_move_speed
(e.g., 360km per day). For example, the parameter camp move chance is the probability of an agent in the camp
moving to another location. The second rule (known as path selection) determines how to choose one path among all
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available direct paths between the current place where an agent is located and another place. Path selection is based
on the attractiveness of different types of destinations and the length of the link in kilometers. Finally, the simulation
terminates after 7 time steps.

To automate the process, we rely on FabFlee (Fabric for Flee Simulation) plugin (https:/github.com/
djgroen/FabFlee), an integration of the Flee simulation code and the FabSim3 [32] toolkit (https://github.com/
djgroen/FabSim3). FebFlee provides an environment to construct and modify migration simulations, and execute an
ensemble of Flee jobs or migration simulations. Each migration simulation is different with a set of different parame-
ters [33].

Since there is commonly large-scale data (affected people) in the context of forced migration, it is very compu-
tationally expensive to execute a simulation for a group of camp locations. To decrease the runtime, we employ the
QCG-PilotJob (http://github.com/vecma-project/QCG-PilotJob) for scheduling the ensemble runs that have been sub-
mitted. QCG-PilotJob is based on the idea of Pilot Job, which manages a large number of relatively short tasks and
ensures that tasks are scheduled efficiently on HPC machines [34].

3) Dataset construction: The food insecurity data is derived from the Integrated Food Security Phase Classifi-
cation (IPC) website (https://www.ipcinfo.org/ipc-country-analysis/). Specifically, the food insecurity severity level of
a candidate site is the average IPC phase score (ranging from 1 to 5) of the site over a period of time. In the data
preparation, we handle missing values according to a priority list (more details about the priority list and heuristics
used for each priority can be found in Supplementary Data 1).

Accessibility data is concerned with the terrain and land cover factors of a group of potential sites. For terrain,
we extract data from the JAXA ALOS Global 30m DSM 2021 dataset downloaded from https://developers.google.
com/earth-engine/datasets/catalog/JAXA ALOS AW3D30 V3 2. This dataset, derived from the Japanese space
agency’s ALOS global digital surface model, is a global digital elevation dataset with a horizontal resolution of
approximately 30 meters. We derive the slope (or the degree of incline between different elevations) from this eleva-
tion dataset in the Google Earth Engine (GEE). Then, we reclassify the slope data into two classes, i.e., the area
where the slope is below 10% and the area where the slope is above 10%. Finally, following UNHCR Principles &
Standards for Settlement Planning (https://emergency.unhcr.org/emergency-assistance/shelter-camp-and-settlement/
settlements/principles-standards-settlement-planning), we remove those possible camp locations if their slopes are
above ten percentages considering the drainage factor as well as the costs of roads and building construction.

For land cover, we rely on the Esri Land Cover 2020 source downloaded from https:/www.arcgis.com/apps/
instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2. This dataset consists of ten classes of land
cover data 2020 (Water, Trees, Grass, Flooded vegetation, Crops, Scrub/shrub, Built area, Bare ground, Snow/Ice,
and Clouds), and is derived from Sentinel-2 imagery at 10-meter resolution. From this dataset, we derive land cover
data of all potential camp locations and then reclassify them according to the suitability of the place for establishing a
new camp. Given 1.0 being completely suited and 0.0 being completely unsuited, three classes including Flooded
vegetation, Snow/Ice, and Clouds are assigned the value of 0.0, four classes including Trees, Crops, Built area, and
Bare ground are assigned the value of 0.5, The Scrub/shrub is assigned 0.75, and the Grass class is assigned 1.0. In
particular, the data that falls into the class Water is excluded since it is not realistic to place a camp in a lake or a
river. In summary, the accessibility scores of potential camp locations range from 0.0 to 1.0, and a higher value is
preferred.

5. Results

5.1. Case Study: South Sudan

As a case study, we apply the MaOP to a real-world conflict situation in South Sudan. Using the Flee [17] sim-
ulation, we investigate the conflict period from 15th December 2013 to 10th August 2015. This simulation setting is
fully presented in [33], but in short it contains up to 2 million agents over a simulation period of 604 days, 25 con-
flict zones and 13 towns within South Sudan, as well as ten camps in the neighboring countries (Sudan, Uganda, and
Ethiopia). Within the spatial simulation domain we consider possible refugee camp locations outside of South Sudan
in a region with the geographic coordinates NO° — N16° and E20° — E40°. We extract a total of 19688 0.1° x0.1°
(approximately 11 km x 11 km) grid cells, which constitute the feasible search space for EAs. In addition, we mod-
ify the model refinement phase [33] so as to integrate the simulation process into multiobjective evolutionary algo-
rithms (see Section I of the supplementary information for more details).

5.2. Test Problems
To investigate the quality of solutions in a range of different settings, four test problems are designed based on
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the South Sudan conflict model ssudan_ccamp in [33]:

e MCLP-SS1: a many-objective camp location problem for the South Sudan conflict model ssudan_ccamp,
where (i) no refugee camp in neighboring countries is considered and (ii) the ‘haversine’ formula is employed for
calculating the distance between a refugee camp and its nearest location in South Sudan.

e MCLP-SS2: a many-objective camp location problem for the South Sudan conflict model ssudan_ccamp,
where (i) ten refugee camps in neighboring countries are considered and (ii) the ‘haversine’ formula is employed for
calculating the distance between a refugee camp and its nearest location in South Sudan.

e MCLP-SS3: a many-objective camp location problem for the South Sudan conflict model ssudan_ccamp,
where (i) no refugee camp in neighboring countries is considered and (ii) the route planning method in [35] is
employed for calculating the distance between a refugee camp and its nearest location in South Sudan.

e MCLP-SS4: a many-objective camp location problem for the South Sudan conflict model ssudan_ccamp,
where (i) ten refugee camps in neighboring countries are considered and (ii) the route planning method in [35] is
employed for calculating the distance between a refugee camp and its nearest location in South Sudan.

5.3. Parameter Settings

For the four test problems, we set a value of 0 for the probability of agents moving from camps to another
location (simulation parameter CampMoveChance) indicating that asylum-seekers/unrecognized refugees stop mov-
ing once they reach a camp. Other important simulation parameter settings include the maximum distance covered by
agents per day (MaxMoveSpeed, being set to 360 km/day) and the setting that agents are aware of the state of their
current and adjacent locations (AwarenessLevel=1).

In particular, we set the capacity of the new camp to 80,000 (i.e., ¢ = 80,000) for MCLP-SS1 and MCLP-
SS3, and 12,000 (c =12,000) for MCLP-SS2 and MCLP-SS4. Because our experiments involve running thou-
sands of simulations, we scale down the number of agents from all conflict zones by a factor
PopulationS caledownFactor = 100, and scale down camp capacity and the number of people in a town or a con-
flict zone accordingly. This is known to proportionally reduce the execution time despite a larger aleatoric uncer-
tainty.

To make fair comparisons of the selected optimization algorithms including four MOEAs (i.e., NSGA-II, refer-
ence-point based NSGA-II (NSGA-IIT) [29], multiobjective EA based on decomposition (MOEA/D) [30], and bi-cri-
terion evolution embedded with MOEA/D (BCE-MOEA/D) [31]) and the Random Search algorithm, we adopt the
following parameter settings.

e The population size (i.e., the number of a set of solutions) for all four MOEAs is set to 20 for all test prob-
lems.

e For all MOEAs, the stopping criterion of one run is set to 300 generations for each test problem.

e The four MOEAs employ two variation operators, i.c., the simulated binary crossover [36] and polynomial
mutation [37]. For the simulated binary crossover, its distribution index is set to 20 and the crossover probability is
set to 1. For the mutation operator, its distribution index is set to 20 and mutation probability is set to 1.

e The Random Search algorithm, which is a benchmark method for comparison against all the other four algo-
rithms, randomly generates 6000 candidate solutions.

5.4. Performance Indicators

We assess the performance of all tested algorithms using the following three indicators:

Hypervolume (HV), which is one of the most commonly used performance indicators in the area of evolution-
ary multiobjective optimization (EMO). Compared with most of the performance indicators in the EMO area, there is
no requirement for the problem's Pareto front to be known when calculating HV, thus making HV well-suited for
practical MaOPs. HV evaluates the performance of a solution set obtained by an algorithm in terms of four quality
aspects, which include convergence, spread, uniformity and cardinality. Given a solution set P and a reference point
r=(ry, ra,..., r,)" inthe objective space, HV is defined as follows [38]:

HV = A( U {[A1(x), 1] X [2(x), r2] X - X [ (%), Fin]}) (7
F(x)eP
where A(-) represents the Lebesgue measure, F(x) = (fi(x), fa(x), ..., fu(x)) denotes an objective vector in P,

and m stands for the number of objectives. For HV, a larger value indicates better overall quality of the solution set.
The calculation of HV needs to tackle two issues well, i.e., the scaling of the objective space and the setting of the
reference point. Following the suggestions in [39], each objective value of obtained solutions is normalized based on
the range of an approximate Pareto front. The approximate Pareto front are a set of nondominated solutions, which
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are selected from the combination of all the solution sets generated by all peer algorithms. Moreover, the reference
point rissetto (1.1, 1.1, ..., 1.1)T, namely 1.1 times of the nadir point.

Unique nondominated front ratio (UNFR), which is a cardinality-based indicator [40] suitable for practical
combinatorial MaOPs. UNFR compares nondominated solutions in the obtained solution set to the Pareto front of the
problem, and only considers unique nondominated solutions that are not dominated by any other solution sets.
Specifically, for an algorithm, UNFR returns the ratio of the number of unique nondominated solutions in the solu-
tion set to the size of the reference set. A higher UNFR value is preferred. As the true Pareto front of many-objective
camp location problem is unknown, the reference set is constituted by those unique nondominated solutions in the
combination of all the solution sets generated by all peer algorithms.

The C indicator (coverage of two sets) [38], which is used for relative convergence comparison of two solution
sets based on the Pareto dominance relation. Let A and B be two solution sets, a solution a € A is said to cover or
weakly dominate solution b € B if a is not worse than b on any objective. The function C(A, B) calculates the pro-
portion of the solutions of B that are covered by at least one solution of set A. The value C(A,B) =0 denotes that
none of the solutions in set B is covered by any solution of set A, and C(A, B) = 1 means that all solutions in set B
are covered by solutions in set A. Note that both C(A, B) and C(B, A) need to be considered when comparing two
solution sets, since they are not necessarily equal, for example, if A dominates B (i.e., every solution of A domi-
nates at least one solution of B), then C(A,B) =1 and C(B,A)=0. In addition, C(A,B) # 1 —C(B, A) unless
there are no solutions in two sets that are nondominated to each other. Moreover, following the suggestions in [39],
we remove the duplicate solutions and then calculate the C values of two solution sets.

Note that the quality of a solution set obtained by an MOEA may degenerate during the evolutionary process. A
recent study demonstrated that such algorithms may face the challenge of maintaining the diversity of solutions [41].
Therefore, to make a fair comparison between those MOEAs and the Random Search, in this paper, we use all non-
dominated solutions found in all generations as the output of an algorithm.

5.5. Performance Comparison

The solution sets of peer algorithms on four test problems are given in Supplementary Tables 1-20. Table 1
gives the quality of solution sets obtained by the selected algorithms on four test problems, in terms of HV and
UNEFR values. For each test problem, the best result is highlighted in boldface. Furthermore, the HV results com-
puted on the final solution sets (i.e., the solution sets generated in the last generation) of all algorithms are shown in
Supplementary Table 21.

Table1 The values of HV and UNFR indicating the performance of the five algorithms on four test problems. The
best value for each test problem is highlighted in boldface

Problem Indicator NSGA-I1 NSGA-III MOEA/D BCE-MOEA/D Random Search
O v 0297 e
MOPSSZ N oson asne o i 0329
MOPSST i oo ass o e 00769
MCLPSS N ot s osto s e

As can be seen in Table 1, for HV, NSGA-III obtains the best performance on MCLP-SS3 and MCLP-SS4.
The performance of NSGA-II is superior to other algorithms on MCLP-SS1, but is inferior to other MOEAS on the
remaining test problems. BCE-MOEA/D performs better than other algorithms on MCLP-SS2. MOEA/D achieves
the second best results on three test problems. Random Search has the lowest HV values on three test problems,
except for MCLP-SS4.

For UNFR, NSGA-III is the peer algorithm with the highest (best) values (51.14% and 55.17%) on MCLP-
SS2 and MCLP-SS3, while MOEA/D is the peer algorithm with the highest values (52% and 45.1%) on MCLP-
SS1 and MCLP-SS4. NSGA-II performs worse than the other three MOEAs on the four test problems. BCE-
MOEA/D performs the second best on three test problems (MCLP-SS1, MCLP-SS2 and MCLP-SS4). For Random
Search, it achieves the lowest (worst) values among the five algorithms, with a maximum value around 33%.

To evaluate the quality of solutions in terms of convergence, Table 2 presents the comparison of different algo-
rithms based on the C indicator (coverage of two sets), where A, B, C, D, and E represent the solution sets of
NSGA-II, NSGA-III, MOEA/D, BCE-MOEA/D and Random Search, respectively. As can be seen, the solution sets
of these MOEAs cover (weakly dominate) the majority of the solutions obtained by Random Search on three test
problems (i.e., MCLP-SS1, MCLP-SS3, and MCLP-SS4). For the remaining test problem (i.e., MCLP-SS2), the five
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algorithms perform similarly in terms of convergence, since none of them obtains a solution set that covers over half
of the solution set of the other algorithm.

Table2 The ¢ values obtained by the four algorithms on four instances. A, B, C, D, E denote the final solution sets
obtained by NSGA-II, NSGA-III, MOEA/D, BCE-MOEA/D, and Random Search, respectively. The last column con-
tains the mean values for each row. Values larger than 50%, indicating a large coverage of one solution set over the
other, are highlighted in boldface

Coverage Test Problem Mean
MCLP-SS1 MCLP-SS2 MCLP-SS3 MCLP-SS4
C(A,B) 39.39% 18.75% 20.69% 31.25% 27.52%
C(A,0) 32.00% 22.64% 28.13% 34.64% 29.35%
C(A,D) 34.29% 16.31% 24.24% 30.08% 26.23%
C(A,E) 67.74% 32.99% 57.69% 53.41% 52.96%
C(B,A) 32.14% 33.71% 56.00% 40.71% 40.64%
C(B,C) 32.00% 33.49% 34.38% 30.72% 32.65%
C(B,D) 17.14% 30.90% 27.27% 37.59% 28.23%
C(B,E) 67.74% 40.21% 61.54% 60.23% 57.43%
C(C,A) 46.43% 32.58% 44.00% 38.05% 40.27%
C(C,B) 66.67% 26.70% 27.59% 32.14% 38.28%
C(C,D) 45.71% 36.48% 27.27% 27.82% 34.32%
C(C,E) 61.29% 41.24% 46.15% 52.27% 50.24%
C(D,A) 39.29% 40.45% 56.00% 35.40% 42.78%
C(D,B) 39.39% 32.95% 31.03% 40.18% 35.89%
C(D,C) 32.00% 34.91% 34.38% 30.07% 32.84%
C(D,E) 77.42% 48.45% 65.38% 60.23% 62.87%
C(E,A) 21.43% 13.48% 48.00% 16.81% 24.93%
C(E,B) 21.21% 9.66% 6.90% 15.18% 13.24%
C(E,C) 20.00% 13.68% 28.13% 12.42% 18.56%
C(E,D) 14.29% 6.87% 18.18% 11.28% 12.65%

Among these MOEAs, both NSGA-III and BCE-MOEA/D outperform NSGA-II on MCLP-SS3, with 56%
solutions of NSGA-II being covered by the solutions obtained by the two algorithms. Moreover, MOEA/D outper-
forms NSGA-III on MCLP-SS1, with 66.67% coverage of the solution set obtained by NSGA-III.

To intuitively describe the distribution of the solutions in the high-dimensional objective space, Figure 3 plots,
by parallel coordinates, the solutions obtained by BCE-MOEA/D and Random Search on MCLP-SS2. As a popular
tool for visualizing high-dimensional data, the parallel coordinates transform the original multi-dimensional data to a
two-dimensional parallel coordinates plane. Recently, Li et al. [42] have systematically described how to use the par-
allel coordinates plot to present a many-objective solution set, and they have indicated that the parallel coordinates
representation can partly reflect the quality of a solution set, e.g., convergence, spread, and uniformity. Note that the
objective values of the solution set obtained by an algorithm for a test problem are normalized according to the maxi-
mum and minimum values of each objective of an approximate Pareto front of the test problem. The approximate
Pareto front of a test problem consists of all nondominated solutions regarding the combined set of all solution sets
obtained by all algorithms on the test problem.

10 BCE-MOEA/D on MCLP-SS2 10 Random search on MCLP-SS2
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Figure 3. The nondominated solutions obtained by BCE-MOEA/D (HV = 0.7206) and Random Search (HV =
0.6404) on MCLP-SS2, as shown by parallel coordinates.
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As shown in Figure 3, BCE-MOEA/D and Random Search perform similarly regarding the convergence, with
both of their solution sets being located in the range of the approximate Pareto front ([0, 1]), but they perform differ-
ently in terms of diversity. In contrast with Random Search that fails to cover the range between 0 and 0.4 on the
second objective as well as the range between 0.6 and 0.9 on the third objective, BCE-MOEA/D has a better dis-
tributed solution set that covers the range within [0.1, 1] and [0,0.9] on the second and third objectives, respectively.
It seems that the solutions obtained by Random Search mainly concentrate in some areas of the approximate Pareto
front since there are few lines distributed around the middle part on the first three objectives, while the solutions
obtained by BCE-MOEA/D distribute uniformly on the second and third objectives. As a result, BCE-MOEA/D has
a better HV value than Random Search (shown in the figure).

To intuitively describe the distribution of the solutions in the decision space, Figure 4 plots the suggested
refugee camp locations obtained by the five algorithms on four test problems. Note that these refugee camp locations
obtained by an algorithm correspond to the unique nondominated solutions in the solution set when calculating
UNEFR of the algorithm. As can be seen, the refugee camp locations obtained by NSGA-II, NSGA-III, and BCE-

NSGA-II on MCLP-SS1 NSGA-II on MCLP-SS2 NSGA-II on MCLP-SS3 NSGA-II on MCLP-SS4

NSGA-III on MCLP-SS1 NSGA-IIl on MCLP-SS2 NSGA- Il on MCLP-SS3 NSGA-IIl on MCLP-SS4

MOEA/D on MCLP-SS1 MOEA/D on MCLP-SS2 MOEA/D on MCLP-SS3 MOEA/D on MCLP-SS4

IS

BCE-MOEA/D on MCLP-SS1 ~ BCE-MOEA/D on MCLP-SS2  BCE-MOEA/D on MCLP-SS3 ~ BCE-MOEA/D on MCLP-SS4

Random search on MCLP-SS1 ~ Random search on MCLP-SS2  Random search on MCLP-SS3 ~ Random search on MCLP-SS4

Figure 4. Suggested refugee camp locations (blue circles) obtained by five algorithms (NSGA-II, NSGA-IIL,
MOEA/D, BCE-MOEA/D, and Random Search) on MCLP-SS1, MCLP-SS2, MCLP-SS3, and MCLP-SS4.
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MOEA/D are widely distributed for most of the test problems. The refugee camp locations obtained by MOEA/D are
mainly crowded or even overlapping in those areas close to the boundary between South Sudan and its neighboring
countries for MCLP-SS2, MCLP-SS3, and MCLP-SS4. For Random Search, it provides much fewer refugee camp
locations than its peer algorithms on all the test problems. In particular, Random Search only obtains two refugee
camp locations for MCLP-SS3, which are near the boundary between South Sudan and its neighboring countries.

5.6. Discussion

We have evaluated the performance of our approach across four multiobjective evolutionary algorithms
(MOEAs), and compared the performance with a more primitive baseline technique (Random Search). Based on our
findings regarding the HV, UNRF, and C indicators of the solution sets, we conclude that the selected MOEAS find a
much wider range of high-quality solutions than Random Search. The failure of Random Search may be explained by
its lack of a mechanism to balance the convergence and diversity during the search process. The advantages of the
selected MOEAs are that they adopt different methods to search for global optima. For instance, NSGA-II employs a
nondominated sorting method and the crowding distance method to estimate the convergence and the density of a
solution, respectively. NSGA-III also adopts the nondominated sorting method for the convergence estimation and it
introduces a niche-preservation operation for diversity maintenance. MOEA/D uses a set of predefined weight vec-
tors to preserve diversity, and an aggregation approach to facilitate convergence. BCE-MOEA/D designs a bi-crite-
rion evolution (BCE) framework, where its two components Pareto criterion (PC) evolution and non-Pareto criterion
(NPC) evolution work collaboratively to drive the solutions towards the Pareto front without diversity loss during the
evolutionary process.

Among the selected MOEAs, regarding C, our experiments show that the selected MOEAs obtain similar con-
vergence as there is no one MOEA that systematically outperforms all others (see Table 2). Nevertheless, there are
differences concerning the HV and UNFR indicators. NSGA-III seems to be the best algorithm for the FLP, which
can search for a set of high-quality solutions in terms of HV and UNFR on half of the test problems. The solution sets
of MOEA/D also obtain good overall quality (with the second best HV values on three test problems) and the largest
cardinality on two test problems, while BCE-MOEA/D shows the best overall performance (in terms of HV) on one
test problem and the second best performance regarding cardinality on three test problems.

NSGA-II performs worse than the other selected MOEAs on the test problems. Although NSGA-II achieves the
best HV value on one test problem, it obtains the worst HV values on the remaining test problems. Moreover, it per-
forms the worst among these MOEAs in terms of UNFR on all test problems. The reason for the poor performance
of NSGA-II may be that this algorithm, as a well-known Pareto-based algorithm, is originally designed for solving
two- or three-objective optimization problems and its performance could deteriorate when tackling optimization
problems with four or more objectives.

6. Conclusion

In this work, we have presented and assessed a new approach to automatically find suitable locations for
refugee camp construction. To the best of our knowledge, this paper is the first to develop a many-objective opti-
mization approach to handle the FLP in the context of humanitarian support for forcibly displaced people. Our
approach is unique in that it is able to balance up to five different objectives, and that it can incorporate objectives
from existing data sources as well as from a migration forecasting model (Flee). We have addressed the underlying
many-objective optimization problem (MaOP) using a simulation-optimization approach, where the (Flee) simulation
captures the movement of each person. Our proposed simulation-optimization approach provides a general frame-
work that can be embedded by various MOEAS, and our case study in South Sudan has demonstrated its applicabil-
ity in a real-world scenario. Our experimental results show that our approach can provide a set of diverse and high-
quality location suggestions for decision-makers, where each suggested solution represents a different trade-off
among the introduced five objectives. In the future, we aim to: 1) explore the possibility of integrating other opti-
mization algorithms (e.g., the PSO algorithm [43, 44], the differential evolution algorithm [45], and the simulated
annealing algorithm [46]) in the proposed approach; 2) apply the proposed approach to other conflict scenarios;
3) improve the proposed approach by considering various objectives such as construction and transportation costs;
and 4) extend the proposed approach to multiple refugee camp location optimization problems. Overall, based on the
results of our approach, we believe that research that combines artificial intelligence techniques with migration simu-
lations can provide ways to support a broad range of important humanitarian decisions.
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