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Abstract: Due to  the  limitations  of  manufacture  technologies,  working  environments  and  other  condi-
tions, metals (such as steel and aluminum) are susceptible to surface defects during the production pro-
cess. Therefore,  defect  detection  is  an  indispensable  part  of  metal  manufacturing.  This  paper  innova-
tively proposes a one-stage defect detection model named Metal-YOLOX. Metal-YOLOX addresses the
limitations in existing models posed by large variances in defect features and inadequate balance between
detection  accuracy  and  efficiency.  Firstly,  the  composite  convolution  module  of  Metal-YOLOX inte-
grates texture, dilated and deformable convolutions to filter out irrelevant features and extract effective
feature information. Secondly, the feature cross-fusion module (HCNet) alleviates the problem of large
dimensional differences in defects. HCNet uses skip connections to establish the connection between the
original  multi-scale  features  and  the  output  nodes,  and  reduces  the  addition  of  redundant  information.
Thirdly,  Metal-YOLOX  adopts  the  deep  separable  convolution  and  global  channel  reduction.  This
lightweight  design  helps  reduce  computational  complexity.  Finally,  detailed  experiments  demonstrate
that, in terms of mean average precision, Metal-YOLOX achieves 79.83, 69.14, and 81.22 on the NEU-
DET,  GC-10  and  Aluminum  datasets,  respectively.  Furthermore,  Metal-YOLOX  dramatically  reduces
parameter  number  and  computational  complexity.  The  experiments  validate  that  the  Metal-YOLOX
model  improves  the  detection  performance,  maintains  the  detection  speed,  and  meets  the  real-time
requirements.
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1. Introduction

Scratches, indentations, and spots on metal surfaces are common defects during industrial manufacturing. These
defects are caused by the limitations or deficiencies of various factors such as raw materials, processing technologies,
and operating environments. Such defects can significantly impact product quality, particularly in high-end manufac-
turing. Consequently, a hot topic of current research is to find efficient and effective methods to detect and classify
metal surface defects promptly. Traditional metal surface defect detection usually relies on manual inspection, which
is  labor-intensive and time-consuming.  In addition,  manual  inspection inevitably depends on subjective factors  that
could contribute to missed detection and false detection, thereby limiting the stability and accuracy of the detection
process. With the rise of defect detection systems based on machine vision, the inspection process has now become
partially automated. Defect detection based on machine vision falls into three main categories. 1) Statistical and spec-
tral methods are used to characterize the texture of defects [1, 2]. 2) Color histogram, color moment, and color coher-
ence  vector  are  used  to  describe  the  color  characteristics  of  defects  [3, 4].  3)  Hough  transform  and  fourier  shape
descriptors are used to describe the shape features [5, 6]. It should be noted that there are limitations in accuracy and
efficiency. Specifically, the process involves the manual setting of colors, textures, and shape features [7], which fails
to fulfill the generalization and intelligence requirements of metal surface defect detection. In addition, existing tech-
niques might not perform well due to the issue of imbalanced and insufficient datasets. Wang et al. [8] proposed two
methods  for  data  augmentation,  i.e.  a  contrastive  adversarial  network  for  minor-class  data  augmentation  and  an
adversarial self-attention network for subdomain-alignment data augmentation. The former proposes a new distance
metric  to  excavate  features  associated  with  operating  conditions  and  generate  data  with  improved  compactness  as
well  as  enhanced  discrimination.  The  latter  [9]  features  a  novel  temporal  association  learning  (TAL)  mechanism,
which  transfers  temporal  information  from  the  discriminator  to  the  generator  via  a  customized  knowledge-sharing
structure, thereby improving the reliability of synthetic long-range associations.
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In recent years, the rapid iterations of deep learning techniques have provided vigorous impetus for the devel-
opment  of  defect  detection  [10−13].  Compared  to  previous  methods,  applying  object  detection  algorithms  in  deep
learning to  defect  detection can achieve more accurate  and efficient  defect  classification and location identification
performances  [14].  Current  research  mainly  includes  one-stage  algorithms  (e.g.,  YOLO  [15],  RetinaNet  [16],  and
SSD [17]) which are known for their detection efficiency, and two-stage algorithms (e.g., Faster-RCNN [18]) which
are known for their detection accuracy. Note that in one-stage networks, region proposals are not required to be gen-
erated before detection. In fact, the defect detection problem is transformed into a regression problem which is later
solved based on the features extracted by the backbone network. As a result, one-stage networks are more advanta-
geous in terms of speed, but may not be as accurate as two-stage networks.

Specifically, based on a defect dataset of the printed circuit board (PCB), Ding et al. [11] achieved mean aver-
age precision (mAP) of 98.90 by using K-means clustering to design appropriate anchor box sizes and incorporating
FPNs into  a  faster  R-CNN model,  although these  complex components  would lead to  inefficient  detection.  As the
single shot multibox detector (SSD) model detects poorly for images with complex or small targets, Liu et al. [13]
improved the SSD algorithm to achieve mAP of 94.3 on the support component dataset of a high-speed railway cate-
nary by adopting MobileNet as the backbone network. Wang et al. [19] improved the detection accuracy on an alu-
minum profile  defect  dataset  by introducing the multi-scale  convolution and ECA attention mechanism [20]  in  the
YOLOv5 network. As Figure 1 indicates, defect detection on metal surfaces encounters three primary challenges. 1)
Large differences in defects. Due to the production process and the surrounding environment, many types of metal
surface  defects  have  variable  shapes  and  sizes,  which  necessitates  a  defect  detection  model  with  high  multi-scale
detection capability. 2) Indistinct defect features. Metal surface defects are difficult distinguish from the background
due  to  factors  like  lighting  and  background  colors.  Meanwhile,  there  is  little  difference  among  different  types  of
defects. 3) Balance between the detection accuracy and efficiency. One-stage detection algorithms trade off accuracy
for  higher  efficiency,  while  two-stage  detection  algorithms  increase  the  screening  of  candidate  boxes  to  improve
detection accuracy. Balancing detection accuracy and efficiency is crucial in the design of defect detection models. In
conclusion, defect detection based on object detection has considerable room for improvement.
  

Figure 1.  Illustrations of three types of normal samples and several common types of defect samples, where the first
column represents normal samples, and the remaining columns represent several common types of defects. For exam-
ple, the first row from left to right are rolled-in scale, pitted surface, patches, inclusion, crazing and scratches.

 
In this paper, considering the above problems, we propose an efficient and accurate one-stage defect detection

model called Metal-YOLOX. Firstly, this paper summarizes and analyzes the typical defects on metal surfaces. Then,
we explore the potential relationship between the convolution and the defect feature extraction. Based on the infor-
mation above, we design the composite convolution module to extract semantic defect feature information effectively.
Secondly, this paper investigates a multiscale feature fusion method to replace the original feature fusion module of
the YOLOX model. This method fuses the semantic information from the feature extraction module to achieve fea-
ture compression and refinement across multiple scales. Finally, we propose a lightweight model design. This design
reduces the number of parameters in the convolutional layers and model structures to prevent the efficiency decrease
of model  detection  caused  by  improving  the  model  detection  accuracy.  The  contributions  of  this  paper  are  sum-
marised as follows.

1)  The composite  convolution module (i.e.  TGSR) is  a  composite  convolution that  combines texture,  dilated,
and  deformable  convolutions  to  detect  linear,  large-area,  and  irregular  defects  on  metal  surfaces.  TGSR  achieves
directed separation of defect features from the feature map.

2)  The  feature  cross-fusion  module  (i.e.  HCNet)  enhances  the  efficiency  of  detecting  multi-scale  defects  by
reducing redundant information and enhancing computation parallelism.
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3)  To  improve  Metal-YOLOX’s  defect  localization  performance,  this  paper  uses  global  lightweight  and  loss
function optimization. These operations decrease the number of parameters.

4) The experimental  results  show that  Metal-YOLOX exhibits  accuracy and efficiency improvement as com-
pared to advanced methods on the NEU-DET [21], GC-10 [22], and Aluminum [23] datasets.

2. The Metal Surface Defect Detection Scheme

2.1. Scheme Overview
Metal-YOLOX is  proposed  to  detect  metal  surface  defects  accurately  while  maintaining  detection  efficiency.

The overall architecture of the Metal-YOLOX model is shown in Figure 2, which partially adopts the design struc-
ture  of  YOLOX.  There  are  two  main  reasons  for  utilizing  YOLOX  as  the  fundamental  structure.  On  one  hand,
YOLOX adopts an anchor-free design pattern to dramatically reduce the number of hyperparameters and guarantee
the generalization of the model without relying on prior knowledge. On the other hand, YOLOX improves the shared
detection head structure to a decoupled head structure. This improvement is inspired by research on the relationship
between classification and localization tasks [24, 25].  Based on these advantages,  Metal-YOLOX retains the struc-
ture of the backbone network and the decoupled head in YOLOX, while improving the feature extraction and fusion
performances.
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Figure 2.  Metal-YOLOX model architecture.
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As shown in Figure 2, Metal-YOLOX uses TGSR and HCNet to replace the original feature pyramid network
PANet [26]. Firstly, TGSR is located in the middle of the backbone network and the feature fusion network to filter
out the defect features in the multi-scale feature maps passed from the backbone network. Secondly, HCNet enhances
the  independence  of  the  top-down and bottom-up fusion of  feature  information after  receiving rich  feature  outputs
from TGSR. HCNet avoids repeated addition of feature information during fusion, and ensures diversity in the fusion
results. Thirdly, Metal-YOLOX optimizes the loss function on localization in the decoupled head, considers the posi-
tion  and  shapes  of  the  prediction  box,  and  uses  and  to  optimize  the  regression  loss.  Based  on  the
designs above, this paper further proposes a lightweight Metal-YOLOX-s.

2.2. Composite Convolution Module
CSPDarknet [27] has excellent feature extraction capability and can extract rich features of different sizes from

input data. CSPDarknet is the backbone network for Metal-YOLOX and is commonly used in YOLO-based defect
detection models.  The YOLO series  first  select  three  adequate  feature  layers  from the  backbone network and pass
them to the subsequent feature pyramid network to construct the main structure of feature extraction. However, not all
feature maps (output by these effective feature layers) contain adequate information to facilitate the classification and
localization of defects. Therefore, in order to enhance the extraction of metal surface defect features, this paper pro-
poses the TGSR module to achieve the filtering of irrelevant feature information and the extraction of effective fea-
ture information by compounding multiple convolutional operations with different functions. As illustrated in Figure 3,
TGSR can be divided into four parts,  i.e.  texture perception, global perception, shape perception, and residual con-
nection. Next, we will detail the design principles of these four parts.
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Texture perception: Linear defects, represented by folds, rolled pits, and scratches, are typically observed on
metal  surfaces.  In order to extract  texture feature information from these kinds of  defects,  we are going to employ
horizontal and vertical convolutions. The horizontal convolution  and the vertical convolution 
use convolutional kernels of size  and , respectively. Compared to regular convolutions that use square ker-
nels (e.g.,  convolution), horizontal and vertical convolutions extract orientation features of linear defects, pro-
viding  more  accurate  classification.  In  the  meantime,  a  smaller  convolutional  kernel  ensures  the  ability  to  extract
small features such as dirty spots. After the horizontal and vertical convolutions, the texture perception module con-
catenates the feature maps of the output and feeds them to 1 × 1 convolution  to reduce the number of
channels. The calculation process is shown in Equation (1).

Zt =Conv1×1 (Concat (Conv1×3 (X) ,Conv3×1 (X))) , (1)

X ∈ RH×W×C H W C
Zt

where  is  the feature map given by the effective feature layer in the backbone network; ,  and 
correspond to the height, width, and number of channels of the feature map, respectively; and  is the feature map of
texture perception, which is later concatenated with the output of the remaining three parts.

RF d

Global perception: Defects like cracks and pits are widely distributed on metal surfaces. Increasing the recep-
tive field of convolutional operations can effectively enhance the extraction of features of large defects. Enlarging the
size of the convolutional kernel is one way to increase the receptive field, but results in a significant increase in the
number of parameters, which is positively correlated with the size of the convolutional kernel. Therefore, the dilated
convolution (DC) [28] is used in the global perception part to obtain higher semantic-level features by increasing the
perception  field.  Dilated  convolution,  inspired  by  interval  sampling,  does  not  change  the  size  of  the  convolutional
kernel, and is calculated based on the given interval and pixel on the feature map. Furthermore, the dilated convolu-
tion controls the size of the receptive field  through the expansion rate  which is calculated by Equation (2).

RF = [(kw−1)d+1][(kh−1)d+1] , (2)

kw kh

d = 1
where  and  represent the width and height of the convolutional kernel. The regular convolution can be viewed
as a particular case of the dilated convolution with . Although the dilated convolution may result in some loss of
local  information,  this  can  be  effectively  mitigated  by  the  consistency  of  images  and  the  supplementation  of  other
semantic information in TGSR. Therefore, the dilated convolution can contribute to the improvement of the detection
performance.

x
y p0 pn p0+ pn

x

∆pn

Shape perception: The shapes  of  defects  do not  always exhibit  certain  regularity.  Defects  on metal  surfaces
have a sizeable inter-class variation, meaning defects within the same category can show remarkably different shapes.
To alleviate the problem of poor convolutional performances in detecting complex-shaped defects, TGSR introduces
the deformable convolutional networks (DCNs) [29].  DCNs utilize differentiable offsets to fit  the receptive field to
the actual shape of the defect. The calculation of a regular convolution can be defined by Equation (3), where  is the
input feature map, and  is the output feature map. Using the expression of the centroid  and the offset , 
can be represented as any pixel under the coverage area of the convolutional kernel. Note that in the feature map ,
the  points  operated  by  the  convolutional  kernel  are  restricted  to  the  area  covered  by  the  kernel.  Therefore,  the
deformable convolution adds an offset  to each pixel as shown in Equation (4). After the above operations, the
position  information  of  the  defect  features  is  more  accurately  included  in  the  feature  map,  thus  promoting  the
improvement of localization accuracy,

y (p0) =
∑
pn∈R

w (pn) · x (p0+ pn) , (3)

IJNDI, 2023, 2(4), 100020. https://doi.org/10.53941/ijndi.2023.100020

 
4

https://doi.org/10.53941/ijndi.2023.100020


y (p0) =
∑
pn∈R

w (pn) · x (p0+ pn+∆pn) . (4)

Residual connection: To avoid the adverse effects of gradient disappearance, we connect the feature maps of
the backbone network’s effective feature layer directly to the TGSR’s final output based on the design idea of resid-
ual edges. At the same time, this residual connection can also supplement the feature semantic information, ensuring
the lower limit of feature extraction.

1×1
The output feature maps are concatenated together based on the four parts above. Then, the number of channels

is reduced using  convolution. At this point, the TGSR module obtains enhanced feature maps consistent with
the original feature map in both size and channel number.

2.3. Feature Cross-Fusion Module

C5 C4 C3

M4 M5

P5

YOLOX uses PANet [26] as the feature fusion module which needs to include more redundant information. As
shown in Figure 4, PANet fuses the high-level feature map  with the middle-level  and low-level layer  from
top to bottom. After downsampling, the result is fused with the middle-level layer  and the high-level layer  to
obtain the feature fusion result . This process involves repeated fusion and induces the accumulation of redundant
feature information in the fusion results, which can lead to weakened feature diversity in the fusion process. Inspired
by BiFPN [30],  HCNet uses skip connections to establish connections between the original multiscale features and
output  nodes.  HCNet  facilitates  complete  feature  transmission  as  well  as  the  fusion  of  high-level  feature  semantic
information output by the TGSR module.
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Figure 4.  Schematic of PANet (a) [26], BiFPN (b) [30] and HCNet (c) and structure of HCNet (d).
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The structure  of  HCNet  is  shown in Figure 4(d).  After  receiving three sets  of  feature  maps of  different  sizes
 from  the  TGSR  module,  is  concatenated  with  to  obtain .  is  then  fused  with  after

repeating the above operation to obtain  (see Equation (5)). At this point, HCNet completes the top-down fusion
process. In the bottom-up fusion process,  is downsampled, and  is obtained by Equation (6) after  is con-
catenated  and convolved  with .  is  obtained  after  fusion  of ,  and ,  see  Equation  (7).  In  the  above
equations, , ,  and  represent the  concatenation,  sampling,  and  downsampling  operations,  respec-
tively.  represents the regular  convolution which can be replaced by the depth separable convolu-
tion in the subsequent lightweight design. The structure of HCNet only has a shortcut between  and , and the
rest of the feature maps can be computed in parallel after the computation of . The calculation process is shown as
follows:

P3 =Conv3×3 (C (C3,U p (Conv3×3 (M4)))) , (5)

P4 =Conv3×3 (C (M4,Ds (C3))) , (6)

P5 =Conv3×3 (C (C5,Ds (C (M4,Ds (C3))))) . (7)
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2.4. Global Lightweight and Loss Function Optimization
Global lightweight: Within the structure of the Metal-YOLOX model, the lightweight design has been incor-

porated into the TGSR and HCNet  modules.  For  example,  the TGSR module uses  tricks  such as  residual  connec-
tions and decreased channel numbers, while HCNet employs fewer convolutional operations than PANet. Neverthe-
less, such a design is only effective locally and cannot achieve significant lightweight for the entire Metal-YOLOX
model. Therefore, this paper proposes the Metal-YOLOX-s model, which uses the depthwise separable convolution
(DSC)  [31]  to  replace  the  original  convolutions,  thus  reducing  the  number  of  model  parameters.  Metal-YOLOX-s
improves defect detection efficiency by replacing regular convolutions with DSC in the backbone network, HCNet,
and the decoupled head. Although DSC may lead to a decrease in accuracy, experiments verify that the detection per-
formance  is  comparable  to  YOLOX  with  fewer  parameters  via  reducing  the  number  of  channels  and  combining
TGSR and HCNet modules.

IoU

IoU

Loss  function  optimization: The  intersection-over-union  ( )  loss  calculation  method  used  in  YOLOX
(Equation (8)) has two main issues: 1) it cannot reflect the overlapping degree between non-intersecting boxes; and 2)
it cannot accurately measure the overlapping degree. The second issue may manifest in metal surface defect detection,
where  the  model  can  generate  differently-shaped  prediction  boxes  for  the  same  defect.  Although  prediction  boxes
overlap differently with the ground truth boxes,  values are the same to prevent the model from generating more
accurate prediction  boxes.  In  particular,  the  shapes  of  prediction  boxes  significantly  impact  the  regression  perfor-
mance for defects such as scratches and rolled pits that occupy a small area in the ground truth boxes.

IoU =
|A∩

B|
|A∪

B| . (8)

CIoU αIoUMetal-YOLOX uses a loss calculation method with joint optimization of  and .

LCIoU = 1− IoU +

∥∥b,bgt

∥∥ 2

d2
+β

4
π2

Å
arctan

wgt

hgt
− arctan

w
h

ã
, (9)

∥∥b,bgt

∥∥ 2
b bgt d2

b bgt

4
π2

Å
arctan

wgt

hgt
− arctan

w
h

ã
b bgt

where  is the deviation between prediction boxes  and ground truth boxes ,  is the diagonal distance

of the minimum closure region of  and , and  considers the difference in the aspect

ratio of  and .
αIoU α

α CIoU
Next,  introduces the coefficient  to the regression loss, and the regression accuracy is adjusted by find-

ing a suitable . When applied to , the regression loss is modified as Equation (10).

Lα−IoU = 1− IoUα+

∥∥b,bgt

∥∥ 2α

d2α
+

ï
β

4
π2

Å
arctan

wgt

hgt
− arctan

w
h

ãòα
, (10)

α− IoU α CIoU αwhere  each  term of  is  augmented  by  an  exponent  based  on ,  and  is  given  in  the  subsequent
experiments.

3. Experiment

This section describes the datasets, performance evaluation, and implementation details of the relevant experi-
ments.

3.1. Experimental Settings

3.1.1. Dataset

In our experiments, we use the NEU-DET [21], GC-10 [22], and Aluminum [23] datasets, as shown in Table 1.
To meet the requirements of the model (for input image size) and satisfy the limit of GPU memory, the resolutions of
the  aforementioned  datasets  are  adjusted  to  224  ×  224,  640  ×  640,  and  640  ×  640,  respectively.  The  datasets  are
divided into training, validation, and test sets according to a ratio of 8∶1∶1.
  

Table 1    Metal surface defects datasets.
Dataset Class Number of samples Resolution

NEU-DET Crazing, rolled-in scale, inclusion, pitted surface, patches, scratches 1800 200 × 200
GC-10 Punching hole, welding line, crescent gap, crease, oil spot, silk spot,

inclusion, rolled pit, water spot, waist folding
2280 2048 × 1000

Aluminum Non-conductive, scratch, orange peel, through-hole, splashing, paint
bubbles, pitting, mottling, dirty spots

3005 2560 × 1920
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3.1.2. Performance Evaluation

The mAP is used to evaluate the Metal-YOLOX’s detection accuracy in the experiments. We use the number
of parameters, floating point operations (FLOPs), and frames per second (FPS) as evaluation metrics to evaluate the
detection efficiency. Parameters measure the spatial complexity of the model, while FLOPs reflect the computational
complexity  which  indicates  the  model's  time  complexity.  Few  parameters  and  FLOPs  are  desirable  for  the  same
detection accuracy. FPS corresponds to the number of images inferred per second. The higher the number, the faster
the inference speed.

3.1.3. Implementation Details

We  set  the  batch  sizes  for  NEU-DET,  GC-10,  and  Aluminum  datasets  to  64,  16,  and  16,  respectively.  The
training epochs for Metal-YOLOX, Metal-YOLOX-s, and compared models are 150, and the SGD optimizer is used.
In addition, the initial learning rate is 0.01, the minimum learning rate is 1e-4, and the momentum and weight decay
factors are 0.937 and 5e-4, respectively.

3.2. Experimental Results and Analysis

3.2.1. Metal Surface Defect Detection

To  verify  the  effectiveness  of  Metal-YOLOX  and  Metal-YOLOX-s,  experiments  are  conducted  to  compare
them with seven mainstream defect detection models on the NEU-DET, GC-10, and Aluminum datasets. The com-
pared models include one-stage detection models represented by the SSD and YOLO series, and two-stage detection
models represented by Faster R-CNN. No additional data augmentation methods are used in any of the models. As
shown in Table 2, the results show the mAP achieved by all models.
 
 

Table 2    Detection results on the three datasets.
Method NEU-DET GC-10 Aluminum

SSD [17] 71.96 60.83 72.56

Faster R-CNN [18] 76.21 65.21 75.86

YOLOv3 [32] 69.40 60.40 69.79

YOLOv4 [27] 63.27 54.28 65.84

YOLOv5 [33] 74.42 63.35 74.19

YOLOX [34] 75.18 63.89 73.06

YOLOv7 [35] 75.99 61.34 67.53

Metal-YOLOX 79.83 69.14 81.22

Metal-YOLOX-s 77.98 67.53 80.57

 

Table  2 displays  that  the  Metal-YOLOX  outperforms  all  the  rest  models  with  the  highest  mAP  on  all  three
datasets, followed by the lightweight Metal-YOLOX-s. This is because Metal-YOLOX-s uses the depthwise separa-
ble convolution to trade off between the detection speed and accuracy. Despite a slight decrease in accuracy, Metal-
YOLOX-s  outperforms  the  other  seven  models.  Compared  to  the  original  YOLOX,  for  the  three  datasets,  Metal-
YOLOX achieves mAP improvements of 4.65, 5.25, and 8.16, while Metal-YOLOX-s achieves mAP improvements
of 2.8, 3.64, and 7.51. YOLOv4 performs the worst, and one of the main reasons for such a bad result is that default-
sized anchor boxes are used during training. Similar to YOLOv4, YOLOv7 does not achieve the expected results on
the GC-10 and Aluminum datasets.

3.2.2. Metal Surface Defect Detection Efficiency

This experiment evaluates the detection efficiency of defect detection models by analyzing the evaluation met-
rics of GFLOPs, FPS and the number of parameters. All models are trained with default settings. YOLOv5, YOLOX,
and YOLOv7 use the L-model.  In terms of parameters,  Metal-YOLOX includes a few parameters by reducing the
number of channels in the model design. Metal-YOLOX-s further reduces parameters by using the depthwise separa-
ble  convolution  throughout  the  model.  FLOPs  represent  the  computational  complexity  of  models,  whilst  Metal-
YOLOX and Metal-YOLOX-s achieve the second-best and the best results, respectively. FPS tested on GPUs is pro-
vided in the fourth row of Table 3, and SSD achieves the speed of 54.92 FPS because VGG with a simple structure is
used  as  the  backbone  network.  Metal-YOLOX  and  Metal-YOLOX-s  achieve  a  similar  FPS  to  that  of  the  YOLO
series on GPUs. In addition, considering that many detection devices in industrial  settings do not have GPUs, FPS
tested on CPUs is provided in the fifth row of Table 3. Compared to parallel computing of GPUs, CPUs use serial
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computing, which leads to differences in FPS results. Metal-YOLOX-s achieves the fastest FPS on devices that only
have  one  CPU.  In  conclusion,  Metal-YOLOX  and  Metal-YOLOX-s  achieve  excellent  results  in  the  efficiency  of
metal surface defect detection, which verifies the effectiveness of the lightweight model design.
  

Table 3    Comparison of metal surface defect detection efficiency.
Metrics YOLOv3 SSD YOLOv4 YOLOv5 YOLOX YOLOv7 Metal-YOLOX Metal-YOLOX-s

Parameters 61.57M 24.82M 63.99M 46.19M 75.81M 37.24M 49.95M 33.59M

FLOPs 77.62G 138.84G 70.80G 54.05G 77.68G 52.47G 48.39G 22.66G

FPS 38.21 54.92 21.44 33.41 29.70 34.63 32.85 35.62

FPS-C 5.29 3.78 4.06 11.78 8.99 6.45 7.38 12.26

 

3.2.3. Ablation Studies

CIoU αIoU

This  experiment  uses  YOLOX  as  the  baseline  on  the  NEU-DET  dataset  and  verifies  the  effects  of  TGSR,
HCNet,  and  loss  function  optimization.  As  presented  in Table  4,  detection  accuracy  achieves  mAP of  78.05  after
using TGSR, which demonstrates the significant effect of feature extraction by TGSR. HCNet aims to achieve a fea-
ture fusion scheme to reduce the transmission of redundant feature information. Therefore, using HCNet alone has a
limited effect on improving detection accuracy. Compared with the baseline, the loss function (jointly optimized by

 and ) has an mAP increase of 1.16. Finally, the complete Metal-YOLOX is compared with the baseline.
The combination of HCNet and TGSR modules yields better results than others, and with the gain from the improved
loss function, Metal-YOLOX achieves mAP of 79.83 which is 4.65 higher than the baseline.
  

Table 4    Results of Metal-YOLOX ablation studies based on mAP on NEU-DET dataset.
Baseline TGSR HCNet CIoU +αIoU mAP
√

75.18
√

78.05
√

75.62
√

76.34
√ √ √

79.83

 

3.2.4. Visualization Experiments

Visualization is an effective way to demonstrate the effectiveness of Metal-YOLOX. For the NEU-DET, GC-
10,  and  Aluminum  datasets,  we  use  the  Metal-YOLOX  model  to  plot  the  heatmaps  and  prediction  boxes.  The
heatmap Gradcam [36] uses the spatial representation information of categories to obtain the importance of regions in
an image for defect detection, which shows the critical features for defect detection from the perspective of detection
models.

Figure  5(a) shows  the  heatmaps  and  prediction  boxes  of  the  NEU-DET,  where  each  column  corresponds  to
each  category  of  NEU-DET.  The  experimental  results  show that  the  highlighted  areas  in  the  heatmaps  are  mainly
concentrated in the center of the defects, namely the central area of the ground truth box. Figure 5(b) describes the
heatmaps and prediction boxes of GC-10. GC-10 has significant differences in defects for different classes, such as
small point-like defects and defects that occupy the entire image. Metal-YOLOX can accurately detect the locations
of different defects in the heatmaps, especially defects of small objects. For the detection of multi-object defect sam-
ples, Metal-YOLOX is also able to correctly identify the categories. Figure 5(c) illustrates the heatmaps and predic-
tion boxes of Aluminum. Unlike the above two datasets, Aluminum contains interference from backgrounds, illumi-
nations, colors and shapes of the samples. As shown in Figure 5(c), the area of some samples in the image is smaller
than the background, which makes it difficult for human eyes to distinguish the location of defects. Metal-YOLOX
can provide accurate prediction boxes. The defect samples contain aluminum materials of different colors and shapes.
In particular, the original rolled lines in the aluminum are very similar to scratches. Metal-YOLOX distinguishes nor-
mal and  defective  areas  effectively,  reflecting  its  excellent  robustness.  In  Appendix,  we  conduct  additional  experi-
ments  to demonstrate  the superiority of  Metal-YOLOX. The experiments  include comparative experiments  on loss
function optimization and mAP line charts (Appendix A).
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(a) NEU-DET

(b) GC-10

(c) Aluminum

Figure 5.  Visualization of defect detection on three datasets (a-c).
 

4. Conclusions

This paper has proposed a scheme for detecting defects on metal surfaces with limited computational resources.
Compared with one-stage algorithms that pursue detection efficiency, our scheme has speed and accuracy advantages.
TGSR in  Metal-YOLOX effectively  extracts  semantic  information  of  defect  features  by  comprehensively  utilizing
texture,  dilated,  and  deformable  convolutions.  HCNet  reduces  redundant  information  in  the  model  and  improves
multi-scale defect detection efficiency via skip connections. Metal-YOLOX has been tested on the NEU-DET, GC-
10, and Aluminum datasets. The experiments have verified that Metal-YOLOX achieves good results in the compar-
ative experiments. In the future, we will attempt to combine semi-supervised learning with defect detection to allevi-
ate effects from the imbalance of classes and the lack of annotated defect samples, thereby further enhancing the per-
formance of metal surface defect detection.
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Appendix A

A.1. Loss Function Optimization Effect
IoU GIoU DIoU CIoU EIoU α

α

CIoU αIoU

On the NEU-DET dataset, we compare mAP of , , , , and  before and after IoU
based on the YOLOX model, and the results are shown in Table A1. The lower right corner of each mAP value indi-
cates the difference between the current loss function and the original IoU loss function, and the bold values indicate
the best experimental results. The coefficient  is set to 3. From Table A1, it can be observed that the loss function
(jointly optimized by  and ) obtains the best experimental results, indicating that the proposed method of
loss function optimization is applicable to metal surface defect detection.
 
 

CIoUTable A1    Experimental results of  versus other loss on the NEU-DET dataset (%).
Settings IoU GIoU DIoU CIoU EIoU

αIoUBefore 75.18 75.44+0.26 74.43−0.75 76.16+0.98 76.20+1.02

αIoUAfter 75.80+0.60 77.39−0.69 75.05−0.13 76.34+1.16 75.91+0.73

 

A.2. mAP on NEU-DET, GC-10, and Aluminum Datasets

Figure A1 shows the trend of mAP with epochs for each model on the three datasets. In Figure A1(a–c), Metal-
YOLOX and Metal-YOLOX-s are close to convergence after 60, 65 and 60 epochs, respectively. Compared to other
models, the convergence speeds of Metal-YOLOX and Metal-YOLOX-s are faster. The lines are relatively smooth,
which reflects that Metal-YOLOX and Metal-YOLOX-s are more stable during training.
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Figure A1.  Metal surface defect detection mAP comparison.
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