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Abstract: Background replacement is one of the most used features in video conferencing applications
by  many  people,  perhaps  mainly  for  privacy  protection,  but  also  for  other  purposes  such  as  branding,
marketing and promoting professionalism. However, the existing applications in video conference tools
have  serious  limitations.  Most  applications  tend  to  generate  strong  artefacts  (while  there  is  a  slight
change  in  the  perspective  of  the  background),  or  require  green  screens  to  avoid  such  artefacts,  which
results in an unnatural background or even exposes the original background to other users in the video
conference. In this work, we aim to study the relationship between the foreground and background in real-
time  videos.  Three  different  methods  are  presented  and  evaluated,  including  the  baseline  U-Net,  the
lightweight  U-Net  MobileNet,  and  the  U-Net  MobileNet&ConvLSTM  models.  The  above  models  are
trained on public datasets for image segmentation. Experimental results show that both the lightweight U-
Net MobileNet  and the  U-Net  MobileNet& ConvLSTM models  achieve superior  performance as  com-
pared to the baseline U-Net model.

Keywords: video conferencing; background replacement; image segmentation; U-Net; mobilenet; Con-
vLSTM

 

1. Introduction

With  the  increase  in  work  from home (WFH)  during  the  COVID pandemic,  the  video  conference  tools  like
Zoom,  MS  Teams  and  Skype  have  been  used  more  than  ever.  These  platforms  have  played  significant  roles  in
replacing the  traditional  physical-office-based work with  the  virtual-office-based work.  The increasing use  of  these
platforms highlights  severe  privacy issues  like  the background exposure in  sensitive environments.  To avoid users'
privacy leakage, the background replacement concept is introduced. This feature enables users to hide their sensitive
or private  background  information  by  blurring  or  replacing  it  with  a  virtual  background.  The  background  replace-
ment technique involves separating the image into two or more layers (generally into the foreground and background)
and merging the separated foreground with the new virtual background. In this case, the target in the foreground is
normally one person or a group of people, while the background is the surroundings to be replaced.

The  background  replacement  techniques  have  been  widely  used  in  video  conferencing  tools  like  Microsoft
Teams,  Skype,  Zoom and Google  Meet.  However,  there  are  still  serious limitations even with these popular  video
conferencing  platforms.  First,  the  current  virtual  background  implementations  do  not  work  accurately  along  the
boundaries between the foreground and background. This produces artefacts at the boundaries, renders an unnatural
virtual background, and could even expose the real background. Second, most of the current applications perform the
background replacement  using static  methods,  i.e.  dealing with  individual  images  instead of  continuous  videos.  At
times, a slight movement of the subject may cause significant changes and make the virtual background inconsistent.
Therefore, it remains a challenging task to estimate the foreground accurately and consistently in these settings.

These challenges motivate us to study the relationship between the background and foreground layers concern-
ing the artefact generated during segmentation. In this paper, we will present three different methods for background
replacement of real-time videos from a webcam, including 1) a baseline U-Net; 2) a lightweight U-Net MobileNet;
and 3) a U-Net MobileNet & ConvLSTM. The main contributions of this paper are summarised as follows:

(1) A lightweight encoder-decoder-based architecture (that uses MobileNetV3-Large as the feature extractor in
the  encoder  block and the  residual  convolution  in  the  decoder  block)  is  developed in  this  work.  This  network can
operate  14  frames  per  second  while  being  tested  via  NVIDIA  GeForce  GTX 1050 Ti  with  4GB  GPU  Memory,
which is almost double faster than the baseline U-NET method.
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(2)  A U-Net  MobileNet&ConvLSTM method  is  presented  which  can  utilize  the  temporal  information  in  the
continuous video input. The proposed method performs much better than the other two methods while being tested
on real-time videos through a webcam. The result is presented in Figure 1.

These methods are robust enough to replace the background while being tested on real-time videos via a web-
cam. However, we found that it is very challenging to predict the target object for segmentation in the cluttered back-
ground with low illumination, see Figure 1.

The rest of the paper is organised as follows. First, we review in Section 2 the previous studies on image mat-
ting and segmentation, and the key issues of replacing backgrounds in video conferencing. The proposed methods are
presented in  Section 3.  Experiments  and result  analysis  are  provided in  Section 4  before  conclusions  are  drawn in
Section 5.

2. Background

The core of background replacement is how to separate the foreground subjects from the background surround-
ing. The existing methods for background subtraction are pretty good at prediction when the auxiliary input is sup-
plied as a parameter to guide the target object. However, due to the dynamic nature of the surroundings in real-time
applications like video conferencing, it is not feasible to supply an extra image to guide the segmentation. Similarly,
the slight movement in the camera angle or target object reveals the background, which leads to an inconsistent result.
In this section, we will review the previous work on this topic from the traditional matting and segmentation methods,
to the most recent deep learning based approaches. Meanwhile, we will also review the dynamic models that address
the temporal characteristics of continuous video inputs.

2.1. Matting
Matting is  the  process  of  separating  the  image  into  two or  more  layers  (generally  into  the  foreground,  back-

ground and mask), or separating the alpha image that determines the blending layers of two or more image elements
into a single image or a frame [1].

I = αF + (1−α)B I F
B α I F

B α

Mathematically, it can be defined as , where  is a given frame (image),  is the foreground,
 is the background, and  is the alpha matte. Therefore, the frame  is a linear combination of the foreground  and

background  through a coefficient  [2]. Trimap-based matting is one of the most used methods in computer vision
[3]. In this method, the trimap is provided as an auxiliary input with three regions: the foreground, background and
unknown [4].

Xu et al. [5] developed a deep convolutional network that consists of two distinct models. The first model is an
encoder-decoder architecture that predicts an alpha matte of an image, and the second model is a convolutional net-
work that refines the alpha matte prediction of the first network with more accurate alpha values and sharper edges.
This  method  achieves  the  SAD  score  of  50.4  and  MSE  of  0.014  with  a  dataset  created  and  published  containing
49300 training and 1000 testing images. Most of the recent matting research uses this dataset to train their model. A
similar encoder-decoder architecture was presented in [6], which uses the ResNet-50 trained on the ImageNet dataset
as an encoder. The SAD and MSE score of this method are 25.8 and 0.0052, respectively. Using ResNet-50 as an
encoder has improved the performance significantly. Although the trimap base method performs well, it requires the
manual trimap as an extra input. As it is impossible to provide the trimap manually for real-time videos, this method
seems unfeasible to real-time videos. So, this method is out of our scope.

Sengupta et al. [7] proposed an adversarial network, where generator G is a deep matting network that extracts
the foreground colour and alpha from the input image, and discriminator D guides the training to generate realistic
images. Here, the generator network (G) is a residual encoder-decoder neural network. This method produces a SAD
score of 1.72 and an MSE of 0.97e-2 on the Adobe image matting (AIM) dataset.  Further,  Lin et  al.  [8] proposed
BackgroundMattingV2, which is an enhanced version of the background matting method [7]. In this method, ResNet-
50 is adopted as the encoder block of the generator and the ASPP (the atrous spatial pyramid pooling) block after the
backbone. This method achieves a SAD score of 1.286 and an MSE of 12.01e-3, and obtains better results on AIM
datasets than the previous methods. Hence, the prediction accuracy is improved when using ResNet-50 (pre-trained
on the ImageNet dataset) as a backbone. While analysing the metrics of the background matting method against the
trimap based method, it seems that the background matting method has better accuracy compared to the trimap based
method. However, this method requires an additional input image without the subject (human). Therefore, its appli-
cation to video conferencing is limited.

2.2. Segmentation
Image segmentation is the process of grouping similar regions or segments of an image under their respective

object type. In image matting, the value of the alpha matte is constrained within (0, 1); however, in image segmenta-
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tion, it is either 0 or 1 [9]. Therefore, image segmentation generates a binary image where each pixel belongs to either
the foreground or background.

Ronneberger  et  al.  [10]  proposed  a  convolutional  network  architecture  (called  the  U-Net),  particularly  for
biomedical image segmentation. It consists of a contracting path to capture the context and a symmetric expanding
path that enables precise localization. The feature map in the contracting path is cropped and concatenated with the
corresponding up-sampled feature maps. The cropping helps to propagate contextual information along the network
and allows to segment objects in an area using the context from a larger overlapping area. Considering humans as the
subject,  Xie  et  al.  [11]  published  a  study  on  the  effectiveness  of  the  U-Net  on  foreground  segmentation.  In  this
research, the authors achieved a 91% accuracy rate, which proves that the U-Net architecture could be used for fore-
ground segmentation. However, the research has left lots of spaces for future work. Taking advantage of these capa-
bilities of the U-Net, Kuang and Tie [12] proposed a flow-based video segmentation method for human heads and
shoulders,  which  is  called  FUNet.  With  this  method,  the  authors  achieved  an  average  dice  coefficient  of  0.96  that
seems  good,  but  there  are  still  spaces  for  improvement  to  achieve  better  accuracy  while  evaluating  the  qualitative
results of the model.

The U-Net is  widely used in segmentation tasks,  and various extensions of the U-Net are developed to solve
domain-specific  problems.  Zhang  et  al.  [13]  introduced  the  residual  U-Net,  where  the  problem  of  vanishing  or
exploding gradients (due to complex and deep neural networks) is solved via introducing residual blocks instead of
simple convolutional blocks. The residual U-Net is initially proposed for road extraction from high-resolution aerial
images in remote sensing image analysis, and is later applied to polyp segmentation, brain tumour segmentation, etc.
[13].

Liang et al. [14] introduced a segmentation method called the TriSeNet. Unlike the U-Net, the whole network in
this method is composed of three different network paths to extract the high-dimensional spatial features, high-level
semantic features and detailed boundary features. This network is trained and tested on an MSSP20K dataset with an
IoU score of 90.43%. This method is trained to predict a single person by aggregating multiple cues, but fails when
there are multiple subjects. Also, the method fails to predict the target subject in challenging scenes like shadows.

The methods mentioned above typically have large numbers of training parameters and require high-end com-
puting resources. Miao et al. [15] developed the PSPNet-50 to address this issue, where the convolutional-layer level
pruning technique is used to optimise the network size and parameters. After optimisation, the parameters are reduced
from 46.7 M to 6.2 M, and the FPS increases from 13 to 31. However, the model's accuracy decreases from 94.8% to
93.2%. The comparisons with the base model is also made before pruning and after pruning. While reviewing this
method's qualitative and quantitative evaluation, we realise that further work could be done to optimise this network.

Zhang et al. [16] developed the PortraitNet, which is a real-time portrait segmentation network for the mobile
device, where a lightweight backbone (MobileNet-V2) is used as an encoder to achieve a high inference speed. The
network parameter is 2.1 M which is significantly low compared to the previous methods. The mean IoU is 93.43%
on the supervise.ly dataset.

2.3. Dynamic Models

The aforementioned studies mostly address the problem statically, either taking input from still images or treat-
ing each video frame as an independent image. To address the dynamic nature of the problem, the recurrent neural
network based methods could be the best alternative while dealing with sequential data from a video input. The Con-
vLSTM [17] and ConvGRU [18] are two recurrent architectures that are adopted from the long short-term memory
(LSTM) and the gated recurrent unite (GRU).

Bearing this in mind, the concept of using frames of an input video as a data sequence was introduced in [19],
where  the  recurrent  architecture  is  used  to  exploit  temporal  information  in  videos  which  can  significantly  improve
temporal coherence and matting quality.  This  architecture  comprises  an encoder  that  extracts  individual  frame fea-
tures, a recurrent decoder that aggregates temporal information, and a deep guided filter module for high-resolution
upsampling. To extract the temporal information, the ConvGRU is integrated on the half channel of each layer in the
decoder. While working well on the simple background such as a green screen, the major drawback of this method is
that it fails to predict the target object in the complex background.

3. Methods

Based on the encoder-decoder architecture of the U-Net, we will develop three different network models in this
study,  including  the  baseline  U-Net,  U-Net  MobileNet  and  U-Net  MobileNet&ConvLSTM.  The  architectures  of
these models are illustrated in Figures 2, 3 and 4.
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Figure 2.  Network architectures of the baseline U-Net model.
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Figure 3.  Network architectures of the lightweight U-Net MobileNet model.
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3.1. U-Net

1
2

1
4

1
8

1
16

For the first experiment, we implement the U-Net architecture and intend it as a baseline model. In this archi-
tecture, there are two paths. The first path is the contraction path, known as the encoder, and the second path is the
expanding path, known as the decoder. Here, the role of the encoder is a features extractor that learns the abstract rep-
resentation of the input image through a sequence of the encoder blocks. The decoder helps to get more complex fea-
tures at the loss of localization information. The localization information is obtained from the encoder path. We adopt

the base U-Net that operates at the , ,  and  feature scales. Each block in the encoder and decoder sections is
the combination of 3x3 convolution layers followed by the batch normalization and the ReLU activation function.

3.2. U-Net with MobileNetV3-Large as Backbone (U-Net MobileNet)
In  this  network,  we  have  used  the  MobileNetV3-Large  as  the  feature  extractor  due  to  the  fact  that,  the

MobileNetV3-Large is light weight with less parameters and still manages to achieve better performance on the Ima-
geNet dataset. For the encoder path, we pick the 16th, 24th, 38th and 193rd layer. Basically, these are ReLU activa-
tion layers. For the decoder path, we use a residual block. In our residual block, we pass the previous layer output to
two blocks. One block has a couple of convolution blocks made up of the depth-wise convolution, batch normaliza-
tion, ReLU, Conv2D, and ReLU activation function. The other block is simply a convolution layer with Conv2D and
batch normalization. Again, we add the two layers as the skip connection that is passed through the ReLU activation
function. Furthermore, the residual block is fed to the next decoder block.

3.3. U-Net with MobileNetV3 as Backbone and ConvLSTM (U-Net MobileNet & ConvLSTM)
Inspired by the bi-directional ConvLSTM U-Net with the densely connected convolution by Azad et al.  [20],

the experiment is conducted by passing the tensor to the ConvLSTM layer after merging encoder and decoder blocks
with the skip connection. The idea behind using the ConvLSTM between the encoder and decoder is to capture the
temporal information from a continuous video input, and also to act as a mechanism to learn non-linear representa-
tion shared among encoding and decoding paths. The feature set from the encoder path has more localization infor-
mation, whereas the decoder path brings the semantic information.

4. Experiments

The details  of  the  experiments,  including  the  datasets,  loss  functions,  model  training,  results  and  analysis  are
described as follows.
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4.1. Data and Augmentation
We  have  used  the  Person  segmentation  dataset  [21]  to  train  our  model.  To  improve  the  generalization  and

robustness of our model, we have applied various data augmentation techniques to the above mentioned dataset. The
augmentation technique helps to artificially increase the amount of data by generating new data points from the exist-
ing data, increase the model generalisation capabilities, and prevent overfitting. We perform the following operations
to  augment  our  data:  the  horizontal  flip,  colour  change  (RGB to  gray-level),  channel  shuffle,  coarse  dropout  (min
holes=3,  max  holes=10,  max  height=32  and  max  width=32),  and  rotation  45°.  After  augmentation,  we  split  each
dataset by 80:10:10 into the train, test and validation datasets.

4.2. Loss Function
The two widely used loss functions in semantic segmentation are the cross entropy and dice loss functions. The

cross-entropy loss function evaluates the class prediction for each pixel individually, and then calculates the averages
of overall pixels. Nonetheless, such a function can cause a problem if we have an unbalanced representation of the
image, as the most prevalent class can dominate the training performance. In contrast, the dice loss function evalu-
ates the intersection and union over the foreground pixel, which can deal with the issue of the unbalanced class.

For example, in our case, we have an image of a human and want to segment our image as the foreground (the
human) and the background (not the human). In most of these images, we likely see most of the pixels in an image
that is not the human. On average, we may find that 70-90% of pixels in the image correspond to the background and
only 10-30% of pixels correspond to the foreground.

If we use the cross-entropy loss function, the algorithm may predict most of the pixels as the background even
when they are not, and this still produces low errors. In the case of the dice loss function, if the model predicts all the
pixels as the background, the intersection would be 0, and this gives rise to an error of 1. Hence, we use the dice loss
function as the loss function. We apply the dice loss function to understand the relation between the foreground A
with respect to the ground-truth B. The dice coefficient that measures the overlap between two samples A and B can
be calculated as:

Dice Coe f f icient =
2|A∩B|
|A|+ |B| (1)

Dice Loss = 1− 2|A∩B|
|A|+ |B| (2)

A∩B A+BHere,  is the common region between the predicted foreground A and the ground truth B, and  rep-
resents the elements in A and B. The coefficient value ranges from 0 to 1, where 1 denotes the perfect prediction and
complete overlap, and 0 is the opposite [22, 23].

4.3. Hyperparameters Setup
Our models are trained via the functional API of TensorFlow using the Adam optimizer. The learning rate is

initialized at 1e-4 and the decay rate is set as 0.1 for every 5 epochs until the minimum learning rate reaches 1e-7.
Similarly, we set a batch size of 8 and resize each image to 256 x 256 pixels to reduce the computation overhead. The
epoch is initialized at 100, the early stopping is set as 10 epochs, and the batch-normalization layers are added after
every convolution layer with a default decay rate of 0.99.

4.4. Training

52nd 57th

69th

U-Net: The baline model is trained on the Person segmentation dataset for 68 epochs with a batch size of 8.
Initially, we start the training with a learning rate of 1e-4 and monitor the validation loss. We decrease the learning
rate by a factor of 0.1 until it reaches 1e-7. Up to 32 epochs, the model is trained at a learning rate of 1e-4, and the
best validation loss is 0.04669. We reduce the learning rate to 1e-5, and after this modification of the learning rate, the
validation loss and other evaluation metrics are slightly improved. However, the improvement in learning stops from
the  epoch, and we reduce the learning rate at the  epoch to 1e-6. After reducing the learning rate, the loss
does not improve, so we reduce the learning rate to 1e-7 after five more epochs. Also, with a learning rate of 1e-7, the
learning capabilities do not improve, so the training stops at the  epoch.

U-Net MobileNet: This model is trained for 46 epochs where each epoch takes almost 6 minutes. During train-
ing,  we monitor  the  validation loss  and reduce the  learning rate  when the  metric  stops  improving for  four  epochs.
Similarly, we configure the early stopping at the patience of 10 with validation loss,  which means that the training
will be stopped if the learning does not improve for the last ten epochs. Further, we configure the model checkpoint
to save only the best performing epoch.

While  training the model,  the validation loss  fluctuates  at  a  high rate  until  19 epochs,  but  the training loss  is
constantly improving. However, the best learning rate (with a learning rate of 1e-4) is 0.04292 at epoch 15. We fur-
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31st

32nd

36th

36th

ther train the model by reducing the learning rate by 0.1, i.e., 1e-5. After reducing the learning rate to 1e-5, the model
improves further to validation loss 0.02406. Further, the learning rate is decreased to 1e-6 at the  epoch, and the
validation loss slightly improves to 0.02298. The best validation loss (obtained at the learning rate of 1e-6) is 0.02298
at the  epoch. However, the validation loss does not improve further. Then, the learning rate is decreased to 1e-7,
and  the  validation  loss  is  improved  slightly  to 0.02297 at  the  epoch.  Similarly,  the  learning  rate  is  further
decreased to 1e-9 to reduce the validation loss. Again, the validation loss does not improve further. Hence, we restore
the best performance model at the  epoch and save it as the final model.

U-Net  MobileNet&ConvLSTM: This  network  is  trained  for  44  epochs  on  the  Person segmentation  dataset.
Initially, we start the training with a learning rate of 1e-4, and it takes approximately 10 minutes per epoch. We mon-
itor the validation loss and reduce the learning rate when the metric stops improving for four epochs. Similarly, we
configure the early stopping at the patience of 10 with validation loss, which means that the training will be stopped if
the learning does not improve for the last ten epochs. Further, we configure the model checkpoint to save only the
best performing epoch.

12th 13th

19th

34th

During  the  training,  the  dice  loss  on  the  validation  set  fluctuates  at  an  extremely  high  rate  in  the  first  few
epochs.  With  a  learning  rate  of  1e-4,  the  best  validation  dice  loss  that  we  could  achieve  is 0.08928 at  the  eighth
epoch. The learning rate does not improve until  the  epoch, and we reduce the learning rate to 1e-5 at  the 
epoch. After reducing the learning rate, the validation loss stabilises at a specific rate. The best performing epoch with
a learning rate of 1e-5 is at  with a validation loss of 0.02773. However, the overall best performing model is at
the  epoch with a dice loss of 0.02604, and is saved as the final model.

4.5. Results
For quantitative evaluations, we first evaluate the dice loss, dice coefficient, mean absolute difference and mean

squared error on the Kaggle Person segmentation dataset [21]. Table 1 shows the performance on the test data of Per-
son segmentation.
  

Table 1    Performance comparison among the three methods on the Kaggle Person segmentation dataset [21]

Method Dice Loss Dice Coef MAD MSE

U-Net 0.0258 0.9741 0.0193 0.0190

U-Net MobileNet 0.0254 0.9745 0.0182 0.0176

U-Net MobileNet & ConvLSTM 0.0274 0.9725 0.0209 0.0207

The results indicate that, although all three methods perform well on the same dataset, the performance of the U-
Net architecture with MobileNetV3 as the backbone marginally outperforms that of the other two methods.

Table 2 lists the parameters, model size and speed frames per second (FPS). It is clearly shown that the base-
line U-Net model is the heaviest model which is computationally expensive, and the other two models are consider-
ably lightweight and fast.  We test  the FPS of each model on a computer with NVIDIA GeForce GTX 1050 Ti of
4GB GPU Memory.
  

Table 2    Model complexity (number of parameters and model size) and the real-time performance in frames per sec-
ond (FPS)

Method Parameters Size (MB) FPS

U-Net 31, 055, 297 355 8

U-Net MobileNet 1, 033, 545 12.9 14

U-Net MobileNet & ConvLSTM 2, 094, 281 25.1 9

 
Similarly,  to  understand  the  generalization  ability  of  our  model,  we  evaluate  our  model  by  using  the  unseen

dataset  (Conference Video Segmentation Dataset  [12])  published by Kuang and Tie. Table  3 illustrates the  perfor-
mance of our model on the test set of the Conference Video Segmentation Dataset dataset.
  

Table 3    Performance comparison among the three methods against FUNet on the ConferenceVideoSegmentation-
Dataset [12]

Method Dice Coef

U-Net 0.9665

U-Net MobileNet 0.9692

U-Net MobileNet & ConvLSTM 0.9680

FUNet 0.9600
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Table 3 shows that our method performs significantly well on the unseen datasets, and this indicates that the U-
Net MobileNet method performs superior to other methods.

A sample of the segmentation results from the Kaggle Person segmentation dataset is shown in Figure 5, and
such results are consistent with the results in Table 1 in that all three methods perform well.
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Figure 5.  Results on the Kaggle Person Segmentation dataset [21].
 

We also test the models on our own videos recorded from a webcam which is significantly different from the
images in  the Kaggle dataset  [21]. Figure 6 and Figure 1 show two examples  where the former has  a  clean back-
ground and the latter has a cluttered background. Since we do not have the ground-truth segmentation results, com-
parisons can only be done through a visual evaluation.
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Figure 6.  Results on new video with a clean background.
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Figure 1.  Results on new video with a cluttered background.
 

Again, all  three methods perform well on the clean background as shown in Figure 6. However, for the clut-
tered background in Figure 1, the baseline U-Net model performs poorly, while the other two models produce much
better segmentation. In particular, for the U-Net MobileNet&ConvLSTM, when the temporal information from con-
tinuous frames is processed, the segmentation results are more consistent and cleaner.

Furthermore, we plot the output of our experiments against the ConferenceVideoSegmentationDataset dataset to
visualise the performance metrics presented in Table 3. The results indicate that the performance of the baseline U-
Net  method is  significantly  poorer  compared  to  the  other  three  methods.  Though the  other  three  methods  perform
significantly  well,  we can see  a  few incorrect  predictions  by the  FUNet  and U-Net  MobileNet&ConvLSTM if  we
focus on tiny details around the arms Figure 7.
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Figure 7.  Results on the ConferenceVideoSegmentationDataset [12].
 

5. Conclusions

To  address  the  problem  of  background  replacement  in  video  conferencing,  we  have  developed  three  U-Net
based models in this work including 1) the baseline U-Net; 2) the lightweight U-Net MobileNet; and 3) the U-Net
MobileNet&ConvLSTM. The baseline U-Net, as expected, is the heaviest with the highest number of parameters and
the slowest running speed. The key ideas behind the development of the lightweight U-Net MobileNet and the U-Net
MobileNet&ConvLSTM models are to reduce the computation, and include the temporal information from continu-
ous video inputs into the process of background segmentation.

We have trained the models on the public dataset of Kaggle Person segmentation [21], and tested them on both
the aforementioned dataset and our own recorded videos. From the experimental results, we can reach the following
conclusions.

(1)  All  three  methods  perform well  on  easy  cases  with  relatively  clean  backgrounds.  On  the  test  split  of  the
public  dataset,  the  lightweight  U-Net  MobileNet  has  marginally  better  performance  by  all  the  metrics  used  in  the
experiments including the dice loss, dice coefficient, MAD and MSE.

(2)  Both the U-Net  MobileNet  and the U-Net  MobileNet&ConvLSTM have very low number of  parameters
and run faster than the baseline U-Net model.

(3) Our own test videos recorded from a webcam indicate that the lightweight U-Net MobileNet and the U-Net
MobileNet&ConvLSTM  models  perform  much  better  than  the  baseline  model,  where  temporal  information  from
continuous video inputs has been included in the U-Net MobileNet&ConvLSTM model.

The presented method can be adopted in both industry and academia. In academia, our segmentation technique
can be adopted for research in medical imaging, like retinal blood vessel segmentation and brain tumor segmentation.
In industry, a zoom plugin that replaces the background can be built on the top of our model. Similarly, the presented
method can be implemented as a filter in social applications such as Snapchat and Instagram.

Though positive results have been produced, much work can be done to further improve the performance. For
example,  our  methods  do  not  perform  well  when  there  is  constant  movements  in  the  background.  Further,  other
architectures for semantic segmentation can be explored such as the MobileNet and ConvLSTM that are presented in
this paper.

Our  research  shows  that  the  utilisation  of  the  temporal  information  that  is  present  in  continuous  frames  can
improve the robustness of the model significantly. Due to the nature of our dataset, we perform one-to-one recurrent
convolution. Therefore, further studies will be directed towards the temporal coherence in video frames by using the
state-of-art neural network methods like the attention mechanisms.
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