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Targeting Inflammation to Control Tissue Fibrosis
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Abstract: Remodeling of the extracellular matrix (ECM) is an essential process in host defense against 
pathogens and tissue repair following injury. However, aberrant inflammatory responses could disturb ECM 
homeostasis leading to progressive disruption in tissue architecture and organ function. Fibrosis is the 
common outcome of a wide range of diseases, especially chronic inflammatory disorders, and represents the 
leading cause of morbidity and mortality globally. This review provides the current understanding of the 
pathogenesis of fibrosis, with particular emphasis on the role of inflammation in this process and the 
translational potential of targeting inflammation as a strategy to control fibrotic progression.

Keywords: inflammation; fibrosis; cytokines.

1. Introduction

Inflammation is the first response mechanism following tissue injury. Various inflammatory cells, 
especially neutrophils and monocytes, are activated and recruited to the injured tissue, which serves as rich 
sources of cytokines, chemokines, and growth factors. These damage-associated signals are also essential for 
activating different effector cells within the tissue microenvironment, such as residential fibroblasts, to 
promote their proliferation, contraction, and the production of collagenous and non-collagenous extracellular 
matrix (ECM) components [1]. Furthermore, inflammatory molecules have been reported to induce the 
myofibroblast transformation through epithelial-mesenchymal transition (EMT) [2] and endothelial-mesenchymal 
transition (EndMT) [3] process. Recently, infiltrating immune cells have been shown to contribute to the 
fibrotic progression by directly transforming into myofibroblasts, in a process called macrophage-to-
myofibroblast transition (MMT), in the kidney [4] and the eye [5]. The acute inflammatory response is critical 
for limiting blood loss and preventing the pathogen spread and invasion [6]. Timely resolution of the 
inflammatory response is essential for restoring homeostasis and preserving tissue integrity and normal organ 
function. The persistent inflammatory response may trigger uncontrolled ECM remodeling and lead to 
permanent tissue damage and fibrosis which is associated with many chronic inflammatory diseases [7]. 
Although numerous factors have been reported to contribute to fibrotic progression, the underlying molecular 
mechanisms are poorly defined and effective management of fibrotic diseases remains a significant unmet 
medical need. In recent years, the importance of inflammation in fibrosis has attracted great attention. This 
review focuses on the role of common inflammatory molecules in fibrotic progression and the potential of 
targeting these pathways to control tissue fibrosis and restore tissue homeostasis.
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2. Transforming Growth Factor-Beta (TGF‑β)

Transforming growth factor-beta (TGF‑β) is a multifunctional growth factor with potent inflammatory 
activity [8] and has been shown to regulate the function of T cells [9‒13], natural killer (NK) cells [14], and 
dendritic cells (DC) [15]. At the same time, TGF‑β serves as one of the most potent regulators of tissue 
fibrosis. Besides inducing the differentiation of fibroblasts into myofibroblasts [16], TGF‑β promotes EMT in 
epithelial cells originating from the lung, liver, lens, or kidney [17] by regulating the activity of both 
canonical and non-canonical signaling transducers [18 ‒ 20]. Deletion of receptor-mediated Smad [21] or 
introduction of exogenous inhibitory Smad [22] leads to attenuated EMT and fibrosis in mice. Inhibitors 
targeting PI3K/Akt [23] and MAPK [24] have also been shown to inhibit fibrosis in preclinical studies and 
clinical trials. TGF‑β’ s role in EndMT has also been extensively investigated and was shown to regulate 
EndMT through the canonical Smad signalling pathway [25,26]. Connective Tissue Growth Factor (CTGF) 
was reported to mediate, at least partially, the profibrotic effects of TGF-β. A functional Smad3 binding site 
has been identified in the CTGF promoter and TGF-β has been shown to induce the expression of CTGF in 
fibroblasts leading to the subsequent differentiation into myofibroblast [27]. On the other hand, CTGF has 
been reported to enhance the binding of TGF-β to its type II receptor TβRII leading to subsequent activation 
of downstream signalling transducers and potentiating the TGF‑β-mediated fibrogenic actions [28]. Despite 
being recognized as a central pathway of fibrosis, TGF‑β is not an ideal therapeutic targets due to its 
multifunctional role. Long-term inhibition of TGF‑β has been shown to cause serious adverse effects.

3. Tumor Necrosis Factor Alpha (TNF-α)

Tumor necrosis factor alpha (TNF-α) is a pleiotropic cytokine that is cleaved from the membrane-bound 
precursors into the soluble mature form by TNF- α -converting enzyme (TACE) [29]. Both precursor and 
mature TNF‑α can activate downstream signalling transducers, through TNFα receptors. Although being 
named because of its role in promoting tumour necrosis, TNF-α is now believed to regulate diverse functions, 
including inflammation [30], angiogenesis [31 ‒ 33], tumorigenesis [34] as well as tissue fibrosis [35]. 
Physiological, TNF-α plays a critical role in normal immune response, however, inappropriate activation of 
TNF-α contributes to the development of a variety of complications. In terms of tissue fibrosis, TNF-α’s role 
in liver fibrosis has been studied extensively. Hepatic stellate cells (HSCs) can differentiate into 
myofibroblasts and serve as the primary contributor to liver fibrosis [36]. Macrophages have been shown to 
serve as a major source of TNF-α [37] and macrophage-derived TNF-α promotes liver fibrosis by regulating 
the NF-kB-mediated HSC survival [38]. The synergistic effect of TNF-α and TGF‑β or other inflammatory 
factors on EMT and EndMT has also been reported [39‒41]. On the other hand, TNF‑α has been shown to 
reduce ECM deposition by reducing the expression of matrix metalloproteinase-9 (MMP9) [42] or inhibiting 
the synthesis of ECM components such as collagen I [43‒47], through mediating the TGF‑β-signalling [48‒50]. 
Therefore, the role of TNF-α remains controversial.

4. Interleukins

Interleukins (ILs) are a group of cytokines that play important immunoregulatory functions. They 
regulate the immune system by promoting the proliferation and differentiation of immune cells and recruiting 
them to the injury sites [51‒54]. Recently, ILs have been reported to govern fibrogenesis in serval organ systems.

IL1 family of cytokines consists of members with both proinflammatory and anti-inflammatory 
properties [55]. Many of them have been implicated in tissue fibrosis. For example, IL-1β is induced in the 
lungs of mice subjected to bleomycin-induced pulmonary fibrosis [56], in sputum and lung tissues of human 
patients with chronic obstructive pulmonary disease (COPD) [57], a disease characterized by fibrotic 
remodeling of the small airways [58], and in bronchoalveolar lavage (BAL) and lung biopsies of patients with 
idiopathic pulmonary fibrosis (IPF) [59]. Studies showed that IL-1β deficient mice are protected from 
bleomycin-induced pulmonary fibrosis [56]. Consistent with this observation, administration of IL-1β can 
lead to pulmonary fibrosis to a comparable magnitude to bleomycin [59]. Transient overexpressing IL-1β in 
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rat lungs has also been reported to cause severe progressive tissue fibrosis [60], whereas neutralizing IL-1β 
antibody can attenuate the silica-induced lung fibrosis by inhibiting the expression of TGF‑β1 [61]. EMT of 
alveolar epithelial cells into myofibroblasts contributes to fibrotic progression in the lung [62] and IL‑1β was 
reported to be actively involved in this process [63]. Besides the lung, IL-1β was reported to regulate renal 
and hepatic fibrosis by mediating the EMT process, and neutralizing antibody targeting IL-1β prevented the 
transformation of renal proximal tubular epithelial cells and hepatic stellate cells [64,65]. Therefore, targeting 
IL-1β may offer an attractive strategy to control tissue fibrosis.

IL-6 is a pleiotropic cytokine with diverse biological functions. Its roles in inflammation and immunity 
are most well characterized. IL-6 was initially demonstrated to induce immunoglobulin production by 
directly affecting B cells [66] and STAT3 was reported to play a critical role in this process [67]. Consistent 
with this observation, IL-6 deficient mice are defective in immunoglobulin production [68,69]. Besides its 
role in B cells, IL-6 has also been reported in regulating T cell function in a STAT3-dependent manner [70,
71]. Interestingly, elevated IL-6 levels are observed in the injured skin tissues [72], patients with pulmonary 
fibrosis [73], systemic sclerosis [74], and liver cirrhosis [75], suggesting a potential disease-modifying role of 
IL-6 in tissue fibrosis. Indeed, IL-6 is shown to promote collagen synthesis and tissue fibrosis in the lung[76], 
kidney [77], heart [78], and skin [79]. Furthermore, increased IL-6 levels as a consequence of repeated 
inflammation are believed to regulate Th1 cell responses in peritoneal fibrosis, whereas IL-6 deficient mice 
are resistant to fibrosis [80]. Similarly, the genetic ablation of IL-6 leads to attenuated fibrosis in a bleomycin-
induced murine model [81]. It was previously demonstrated that genetic or pharmacologic removal of IL-6 
resulted in the attenuation of fibrosis [73]. Tocilizumab is a humanized monoclonal antibody against the IL-6 
receptor. Blocking IL-6 trans signalling with Tocilizumab leads to improved skin scores in patients with 
diffuse systemic sclerosis [82]. These data provide evidence of IL-6 as an attractive therapeutic target for 
treating fibrosis.

IL-7 is a member of the IL-2 superfamily and signals through IL-7R [83]. IL-7/IL-7R signalling is 
essential for the development of T cells and mouse B cells, the differentiation and survival of naive T cells, 
and the generation and maintenance of memory T cells [83]. Unlike IL-1β, IL7’s role in tissue fibrosis is less 
understood. However, it was reported to downregulate TGF‑β production in macrophages in an IFN- γ
-independent manner [84]. Consistent with these in vitro observations, recombinant IL-7 has been shown to 
reduce bleomycin-induced pulmonary fibrosis in mice by suppressing the expression of TGF-β in a JAK1/
STAT1-dependent manner [85]. In addition, IL-7-mediated inhibition of TGF-β signaling was associated with 
an increase in the expression of an inhibitory Smad, Smad7 [85]. Similarly, IL-7 was also reported to 
attenuate high-glucose-induced activation of the TGF‑β signaling pathway, EMT of renal proximal tubule 
epithelial cells and renal fibrosis [86]. Consistent with the observations in pulmonary fibroblasts, high-
glucose-induced inhibition of Smad7 is significantly reversed by IL-7 [86]. In liver fibrosis, the IL7RA 
rs6897932 polymorphism was reported to be associated with an increased risk of liver fibrosis progression in 
HCV-infected patients [87], and regulating IL7R expression by targeting miR-122-5p can inhibit HBV-related 
liver fibrosis [88].

5. Chemokines

Chemokines are soluble, membrane-bound proteins that act on the superfamily of G-protein coupled 
serpentine receptors expressed on various target cells [89]. They act synergistically with other cytokines to 
recruit and activate various effectors cells, such as myofibroblasts, endothelial cells, neutrophils, and 
monocytes, within the tissue microenvironment in response to tissue injury [90]. Based on the number of 
amino acids located between the N-terminal cysteine residues, chemokines could be divided into four groups, 
C, CC, CXC, and CX3C [91].

5.1. CXCL

The CXC family of chemokines are important mediators of inflammatory response and their main 
function is to guide the neutrophils to the site of infection [92] and activates them [93]. Besides its important roles 
in inflammation, CXCLs also participate in tissue fibrosis. CXCL8 is induced in patients with IPF [94,95], 
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pneumoconiosis [96], liver fibrosis [97], and cystic fibrosis [98]. Mesenchymal progenitor cell (MPC) -
derived CXCL8 promotes pulmonary fibrosis by increasing MPC proliferation and recruiting activated 
macrophages in the lung. CXCL8’s role in EMT has also been reported [99], however, how whether it is 
involved in EMT-mediated tissue fibrosis remains to be investigated. A similar role of CXCL10 has also been 
reported. CXCL10 is induced in severe hepatitis C virus (HCV)-induced liver fibrosis [100] and the delection 
of CXCL10 leads to reduced liver fibrosis [101]. CXCL4 is another pro-fibrotic chemokine and it regulates 
liver fibrosis by inhibiting the migration of CD8+T cells [102]. CXC chemokines are also involved in 
pulmonary fibrosis, primarily through their action on T helper 1 and Natural Killer T cells [103]. Blocking 
CXCLs, such as CXCL2, significantly attenuates the development of pulmonary fibrosis [103]. However, 
other CXCLs, including CXCL10 and CXCL11, serve as potent inhibitors of pulmonary fibrosis [104,105].

5.2. CCL

Hepatic stellate cells (HSC) express a multitude of CCLs, such as CCL2, CCL3, CCL5, and CCL21 [106,107]. 
Inhibition of CCL2 and CCL21 indeed attenuates liver fibrosis in vivo [107, 108]. CCLs have also been 
implicated in the pathogenesis of pulmonary fibrosis. CCL2 mRNA and protein expression are highly 
induced in lung epithelial cells and bronchoalveolar fluid from human patients with IPF [109], and the 
profibrotic role of CCL2 has been demonstrated in various animal models of pulmonary fibrosis [110‒112]. 
However, clinical trial results on the CCL2 CCL2-neutralizing antibody in patients with IPF was rather 
disappointing [113]. CCR7 is a cognate receptor of CCL21 and it is expressed in IPF but not normal 
fibroblasts [114]. Furthermore, CCL21 can activate CCR7 on fibroblasts isolated from patients with IPF to 
promote their proliferation migration and chemokine expression in a mitogen-activated protein kinase 
(MAPK) 1/2-dependent manner [114]. Indeed, the CCL21 neutralizing antibody has been shown to attenuate 
pulmonary fibrosis in vivo [115]. Besides the lung, CCL21 is involved in the fibrotic progression in different 
organs and tissues, including the lymph nodes [116], heart [117], and kidney [118]. For example, CCL21 is 
expressed by high endothelial venules in lymph nodes and Peyer’s patches and by stromal cells in the T-cell 
areas of secondary lymphoid organs [119]. The binding between CCL21 and its receptor CCR7 is essential in 
the organization of normal lymphoid tissue during development [119]. CCL21 can also stimulate the 
recruitment of CCR7+ dendritic cells (DCs) and lymphocytes into both renal draining lymph nodes (RDLNs) 
and spleen, resulting in a systemic lymphocyte expansion, which plays a critical role in driving fibrosis 
following renal injury. Consistently, Injury-induced intrarenal inflammation and fibrosis could be attenuated 
by blocking the recruitment of CCR7+ cells into RDLN and spleen or inhibiting lymphangiogenesis [116]. In 
addition, blockading CCL21/CCR7 signaling using a neutralizing CCL21 antibody effectively attenuates 
renal fibrosis by reducing the recruitment of macrophages and renal transcripts of monocyte chemoattractant 
protein-1 (MCP-1/CCL2) [116]. It is worthy highlighting that the CCL21-induced migration of fibrocytes is 
chemotactic but not chemokinetic [120].

6. Future Directions

Despite the advances in understanding the pathophysiological mechanisms of fibrosis, effective 
management of fibrotic diseases remains challenging. At the site of tissue injury or infection, recruited and 
activated inflammatory cells contribute to fibrotic progression by interacting with resident cells within the 
tissue microenvironment [121]. Targeting inflammatory regulators may serve as an attractive approach for 
developing novel anti-fibrotic therapeutics. However, the complex role of inflammation molecules and the 
heterogeneity of different fibrotic disease contexts warrant further investigation in the search for novel 
therapeutic targets for a specific type of fibrotic disease. Recent single-cell multi-omics approaches looking at 
molecular changes in distinct cell populations of healthy and diseased tissue samples with unprecedented 
resolution revolutionized our understanding of disease pathogenesis [122,123]. These approaches offer a 
powerful exploration of cell states and types at the single-cell level, helping us to generate new insights into 
the disease mechanisms associated with fibrosis.
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