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Abstract: Industry 4.0 is shaping the metal forming industry. The ongoing key Industry 4.0 technologies, 
including the industrial cyber-physical system (I-CPS), industrial internet of things (I-IoT), digital twin 
(DT), big data (BD) and cloud computing (CC), are expected to improve every stage during the metal 
forming processes, including the supply chains, raw material provision, tool design and manufacture, 
forming operations, energy consumption, cost, quality control and customer services. Here, we review the 
development and implementations of these key Industry 4.0 technologies in the metal forming industry. 
Based on the discussion of the opportunities and challenges of Industry 4.0 technologies in metal forming, 
this review provides some perspectives of future metal forming research directions towards automotive 
applications.
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1. Introduction

Metal forming has long been an important sector during the technology evolution, and is one of the most 
popular manufacturing crafts [1]. The metal forming industry accounts for nearly 20% of the national GDP of 
the modern industrialised nations [2]. In addition, 90% [3] and 67% [4] of steel and aluminium products 
respectively, especially those used in automotive, aircraft, naval and domestic appliance industries, are 
manufactured by at least one metal forming process. Advanced metal forming technologies enable the 
efficient manufacturing of complex-shaped components with remarkable reduction in raw material usage, 
high formability and high post-form material strengths. The corresponding technologies have been 
successfully integrated in manufacturing plants, especially in automotive and aircraft plants over the past 
decades [5–9], together with the development of other theoretical and experimental metal forming related 
technologies including coating [10–12], lubrication [13–17] and tool design [18,19].

Empowered by the Fourth Industrial Revolution, namely the Industry 4.0 [20], a concept initiated in 
2011 and popularised in 2015, the business models for the entire manufacturing industry are being digitally 
transformed and revitalised towards mechanical automation by key enabling technologies covering 
communication, controlling and intelligence, that enhance the manufacturing productivity and flexibility [21–
23]. However, according to a survey carried out in 2020 for global manufacturers, approximately 52% of the 
participating manufacturers indicated that their companies lack the expertise and culture to explore and use 
Industry 4.0 technologies. This can be further proved by the fact that only 28% of these responders have tried 
to integrate any Industry 4.0 technology to optimise their manufacturing processes [24]. The subdued 
inclination for uptake of these Industry 4.0 technologies leads to significant challenges when achieving the 
industry-scale transformation of digital manufacturing [24].
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In the present work, we review 102 peer-reviewed articles and recent manufacturing reports focusing on 
the metal forming technologies, key Industry 4.0 technologies including the industrial cyber-physical system 
(I-CPS), industrial internet of things (I-IoT), digital twin (DT), big data (BD) and cloud computing (CC), and 
their recent developments and implementations in metal forming field towards automotive applications. Of 
these, over 90 items were published over the last decade (2013 to present), and over 40 items were published 
since 2020. In addition, we open a discussion focusing on the ongoing efforts and potential opportunities and 
challenges based upon the recent research findings that emphasise the implementation, interaction, 
integration, and innovation of the introduced Industry 4.0 technologies.

2. Industrial Cyber-Physical System

A rapid growth has been witnessed in the development of diverse cyber-physical systems (CPS). Of 
these, as shown in Figure 1, the industrial cyber-physical system (I-CPS) can be defined as a combination of 
the industrial cyber and physical systems that synergistically enable precise and efficient manufacturing 
production applications [22,25]. The I-CPS is expected to strengthen the operation stages throughout the 
metal forming plant, including the supply chains [26], raw blanks or billets production [27, 28], forming 
operation and quality prediction [29], energy saving [30], cost reduction and customer services [31]. The 
implementation of I-CPS in metal forming industry requires sophisticated interactions among different digital 
technologies. Taking the digital transformation of a rolling mill as an example, the full integration of I-CPS in 
the rolling mill incorporates the sensing technology for collecting real-time big data, big data processing 
technology, and data visualisation technology for mapping the effects of milling parameters [32].

An I-CPS was designed for the automotive hot stamping factories [33]. The key processing 
parameters, production efficiency and energy consumption were monitored and optimised remotely for hot 
stamping factories. The hot stamping I-CPS configuration towards automotive applications consists of five 
key layers, (1) the sensing and input layer for information or data requisition, (2) the edge computing layer 
for data processing and transferring, (3) the metadata storage layer for large-scale metadata online storage 
requirements, (4) the intelligent analysis layer for model establishment on the production efficiency 
analysis, energy consumption analysis, process optimisation, etc., and (5) the application layer for digital 
applications such as the data visualisation, production report generation and permission distribution.

3. Industrial Internet of Things

First introduced in 1999, the idea of internet of things (IoT) enables the inter-connection of ‘Anything’  
in ‘Anywhere’  at ‘Anytime’ . Specifically, it is described as a smart system incorporating the physical world 
into a digital ecosystem [31]. Therein, the ‘things’  indicates the unprecedented amounts of electronic devices 

Figure 1.　The configuration of I-CPS. Reprinted/adapted with permission from [22].
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including wireless sensing networks, external recorders and other subsystems [34]. The IoT has attracted 
increasing attention, and the total value of global IoT technologies is projected to reach $6.2 trillion by 
2025 [35].

The industrial IoT (I-IoT) is the application of IoT in industrial activities, which is dedicated to improve 
the productivity, efficiency, safety, flexibility, scalability, customer service and enhancing intelligence of the 
manufacturing and industrial systems [22,36]. I-IoT offers seamless interoperability and connectivity among 
industrial devices, systems, services, networks, and in particular the control systems. I-IoT can be defined in 
three tiers from the industrial perspective [22], i.e., Tier 1: physical layer (or Edge [36]), consisting of various 
hardware devices like sensors and external recorders; Tier 2: communication layer (or Platform [36]), 
providing shared manufacturing big data and connecting the physical layer to the Tier 3, the application layer 
(or Enterprise [36]), which is represented by the smart factory, smart plant and smart supply chain.

Advanced sensing technology is one of the key factors for realising the I-IoT in metal forming industry via 
connecting the physical layer with the application layer [37]. Figure 2 shows a typical sensing network in metal 
forming workshops operated in I-IoT [38], where the protection of security, IT environment, power system and 
facilities around the factory are monitored. The sensing technology for metal forming can be divided into four 
types [37], i.e., the direct metrology (e.g., directly measuring the contact pressure in stamping process [39]), the 
indirect metrology (e.g., incorporating a sensor into a bolt [40]), the die-embedded metrology (e.g., die embedded 
micro-sensors [41]) and the intelligent metrology. Of these, the intelligent metrology equipped with a visualisation 
system incorporating sensors (hard sensing), process simulation (soft sensing) and data (knowledge), was 
proposed for precisely monitoring the metal forming processes [37].

In automotive industry, the integration of I-IoT and automated supply chain was proposed for 
optimising the metal forming productivity, forming process, product quality and economic feasibility [1,
42]. The I-IoT is getting more importance and visibility in metal forming industry because it led to better 
formability and precision of the formed products [41]. For instance, the metal additive manufacturing (AM) 
can be regarded as an essential ingredient in the intelligent production systems, and can be intelligently 
driven by integrating the Industry 4.0 technologies in CNC machines, especially the I-IoT technology [43]. 
Challenges in traditional metal AM, such as the poor repeatability, improper material property, interlayer 
imperfection, data management and low efficiency, can be improved by associating I-IoT [44]. The I-IoT 
technology has been implemented in servo presses in metal forming processes for improving the tool life 
[45], in which the artificial intelligence (AI) is expected to be integrated to predict the future maintenance 
requirements. With overall monitoring of the metal forming workshop, including die casting [46] and 
forming processes [30], the I-IoT technology can improve the energy efficiency and management of the 
metal forming enterprises.

4. Digital Twin

Introduced in 2003 via a course named ‘product lifecycle management’  by Grieves [47], digital twin 
(DT) has become one of the most promising technologies for realising Industry 4.0. DT can be defined as the 
seamless integration between the cyber and physical spaces [48]. Specifically, in industrial applications, it 
integrates the physical manufacturing entities to their respective cyber entities and includes diverse decision-
making algorithms, modules or platforms for industrial activties [49,50]. Using the real-time data collected 

Figure 2.　Typical sensing network of metal forming workshops in I-IoT. Reprinted/adapted with permission from [38].



19 of 27

from embedded sensors, sophisticated high-fidelity models (virtual entity) are established to reflect the real-
time state (such as information model and functional elements) by almost mirroring the entire life-cycle of 
the manufactured products (physical entity) [50].

The implementation of DT in metal forming industry has been widely considered to improve the metal 
forming process from various perspectives, including the real-time component geometrical precision and 
tolerance [51], tools or forming machines [52], energy consumption [47], and design roadmap of the metal 
forming process [53]. For instance, a DT-driven modelling method was proposed for reflecting real-time state 
of sheet metal forming process focusing on the die wear conditions [47]. The updating coefficient of friction, 
blank holder force, punch force, and punch displacement were monitored and captured by the force and 
displacement sensors. The optimisation results demonstrate that a 14.35% reduction was achieved in the 
maximum thinning region of the stamped part, as well as 8.9% reduction in the energy consumption through 
the forming process.

The DT technology is now being actively considered as a supervisory role in metal AM process through 
real-time monitoring and control [54-60]. A DT hierarchy consisting of four distinct tiers for the metal AM 
DT was proposed [57]. As show in Figure 3, Tier 1 represents the Implicit DT, which mirrors a specific metal 
AM machine. In this Tier, the prediction via high-fidelity physical models is made to avoid multi-trials [61]. 
Tier 2 represents the Instantiated DT that relies on the sensing technology to connect the physical and virtual 
entities. Tier 3 represents the Interfaced DT that enables the real-time monitoring, controlling and optimising. 
The DT closed-loop (real-time in-situ monitoring and control system [60]) is established to allow the 
feedback to the physical space following the instantiated updating of the virtual space. Finally, Tier 4 
represents the Intelligent DT that can realise the sophisticated real-time decision making through the 
application of AI. This releases the potential of forming the tailored products since correction could be made 
via intelligent predictions when or before the defects occur [62]. Although the effectiveness of each Tier, 
especially Tier 4, in this metal DT hierarchy requires more investigations and conclusive validations, they are 
still referable to all the metal forming processes.

A DT-based CPS was proposed to predict whether a product can be formed in abnormal scenarios 
involving automotive body production lines [63]. The information models of the product, process, plant, etc., 
were established for the automotive body production lines. Experimental results demonstrate that an average 
prediction accuracy of over 96% was achieved in the actual production line. In addition, a hybrid data-driven 
and model-based framework for establishing a combined monitoring and control system was proposed in the 
complicated automotive sheet metal forming processes [42]. This framework used the retrieved data (such as 
the material information and coatings) and the captured real-time metal forming data (such as temperature, 
sheet thickness and tribology behaviours) as an input for the process models to predict the product/process 
settings as the output, then this would be utilised for optimising the product properties or process settings. 

Figure 3.　The metal AM digital twin hierarchy. Reprinted/adapted with permission from [57].
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However, the computational cost of the process model needs to be reduced to provide faster response, and 
further lab-scale validation is required on this framework.

5. Big Data

Big data (BD) refers to the datasets that are too large or complex to be tackled by traditional data-
processing methods, thus requires new technologies to mine insightful information from it. BD can be 
characterised in five well-accepted dimensions, namely the ‘5Vs’  representing ‘Volume, Velocity, Value, 
Veracity and Variety’  [64] (Figure 4a). Moreover, the well-known FAIR (Findable, Accessible, Interoperable 
and Reusable) data principles (Figure 4b) provide a foundational guideline for researchers to generate, store, 
utilise and manage scientific big data [65]. The FAIR data principles act as valuable guidebook since volumes 
of data are being generated and captured during daily manufacturing and academic activities. In the 
manufacturing sector, the total value of the global big data market was $3.22 billion in 2018, and it is 
expected to exceed $9 billion by 2026 [66]. As one of the key subsectors of manufacturing industry [67], the 
metal forming industry increasingly generates big data which desires effective processing and characterisation 
for mining more insightful information. Thus, the big data (BD) technology has been extensively studied and 
implemented in almost all stages of metal forming process, ranging from customer services to supply chains 
[31], from material preparation [68,69] to failure prediction and quality analysis [70,71].

Big data generated during the metal forming processes are mainly captured by the sensing networks [72,
73]. In addition, the metal forming data can also be collected from the experimentally verified finite element 
analysis (FEA) simulations [74,75]. Fig. 4c shows the data mapping of the hot stamping datasets collected 
from the experimentally verified FEA models containing the thermo-mechanical information (e. g., 
temperature data, contact pressure data, strain rate data) of the stamping and quenching operations [5–7,76]. 
These FEA models simulated the hot stamping of representative automotive components such as side beams, 
B-pillars and door inners. This data collection method can be proactive by providing optimisation suggestions 
through data processing and analysis before the actual forming process commences.

The AI technology leads the investigations on big data processing in metal forming, spanning the 
material design [78], forming force prediction [77], tribological characteristics [78,79] and product surface 
quality [80], geometrical accuracy [81], process formability [82], tool path design and generation [83] 
(especially for incremental sheet metal forming [84]), product [85] and die designs [86], in-process defect 
monitoring [87], etc. Therein, various AI methods, especially machine learning (ML) algorithms, including 
the artificial neural network (ANN) algorithm [85], support vector machine (SVM) [78], quantum-behaved 
particle swarm optimisation (QPSO) algorithm [80], multilayer perceptron (MLP) algorithm [88] and 

Figure 4.　(a) The ‘5Vs’  property of big data; (b) The FAIR principles; (c) Mapping the dataset from a specific metal 
forming process: hot stamping process, for automotive components production.
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convolutional neural networks (CNNs) [83], are widely utilised. In terms of the applications of AI in sheet 
metal forming, supervised ML is still the predominant AI method [77]. However, one of the limitations of ML 
algorithms is that the generalisation of the prediction is required to draw conclusions on a different metal 
forming process, if the dataset of that process is not included in the training data [83].

Data visualisation can provide intuitive digital information. The global flow of steels [3] and aluminium 
[4] were mapped based on big data, which provides intuitive and comprehensive image on the entire material 
supply chain cycle from the raw materials to end-use goods. Big data was collected from the manufacturing 
processes enabling the development of Digital Characteristics (DCs) to map the manufacturing processes 
from the perspective of metadata [89], where our understanding remains incomplete. The DCs incorporate 
essential information spanning the design, manufacturing and application stages of the manufactured products 
[89]. Figure 5 shows the DCs developed based on the datasets from the tube hydroforming and hot stamping 
process by characterising the thermo-mechanical evolutions during forming, including the normalised major 
and minor strains, and normalised major and minor stresses. Distinct discrepancies can be clearly observed by 
comparing the DCs of the two metal forming processes, indicating the potential for using DCs to identify 
different metal forming (or manufacturing) processes if essential information of the data is absent.

6. Cloud Computing

Cloud-based computing resources, enabling distributed and dynamic collaborative manufacturing 
operations, have drawn increasing interests. Cloud computing (CC) is a model for enabling convenient, on-
demand network access to a shared pool of configurable computing resources that can be rapidly provisioned 
and released with minimal management effort or service provider interaction [90]. The key for CC is to 
provide geographically distributed manufacturers with centralised computation services. For sheet metal 
forming technology, a CC service was scheduled for establishing the cloud-based production system [91]. 
Therein, a genetic algorithm-based planning and scheduling application was developed to provide cost-
efficiency, flexibility and scalability solutions. The application case demonstrates that the proposed 
scheduling system utilised the CC technology to provide ‘close to real-time’  analysis and planning according 
to the dynamic requirements and inputs for multiple factories. In addition, the incremental sheet forming 

Figure 5.　The DCs of the tube hydroforming process and hot stamping process by mapping the evolutionary 
normalised thermo-mechanical data as a function of normalised forming stages 0–10.
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process was adapted into CC for providing flexible manufacturing service to production networks for three 
selected industries (case study) [92]. The tool path control was also optimised by developing an adaptive 
control algorithm with variable forming depth at a process level for bypassing the fracturing of sheets due to 
the localised thinning. The potential of selecting incremental sheet forming service providers was highlighted 
based on the material database.

Innovations are being made on configuring the CC system for enhancing metal forming processes [93]. 
A group of researchers have pioneered the cloud-based FEA technologies enabling advanced multi-objective 
FEA of metal forming processes, in addition, commercial cloud based services such as the ESI cloud and 
AutoForm cloud, were developed to enhance the computational efficiency [74,94,95]. This cloud-based FEA 
platform contains verified scientific data repository, pre-FEA modules, post-FEA modules, etc [74,94]. Figure 6 
shows the configuration of this novel platform, where the stored data can be used for data sharing and 
analysis, leading to digitally enhanced research and development [94]. The pre-FEA modules contains the 
‘Material-mate’  module for enabling the generation of material cards to be used in forming tests, the ‘IHTC-
mate’  module for creating interfacial heat transfer coefficient (IHTC) computing plug-ins for heat transfer 
models, and the ‘Tribo-mate’  module for enabling interactive friction models to be used and validated by 
forming tests. The post-FEA modules contains the ‘Tailor’  module for enabling the prediction of post-form 
strength, the ‘Tool-maker’  module for enabling the prediction of cold die quenching efficiency, and the 
‘Formability’  module for enabling the prediction of formability. The effectiveness of these functional 
modules was successfully validated in peer-reviewed studies towards automotive applications [74,75,94-99]. 
The cloud FEA can be further characterised into 3 layers, namely the resource layer, cloud platform layer and 
application layer. The resource providers and users can be world-wide academic institutions, material 
suppliers, and equipment, brand and design manufacturers.

7. Discussion

The Industry 4.0 technologies are not isolated. The increasingly sophisticated metal forming operations 
require the emergent I-CPS, I-IoT, DT, BD and CC technologies. For instance, the DTs and BD are mutually 
reinforcing technologies in the era of digital manufacturing [48]. The sensing technology is one of the most 
important enablers in I-IoT, I-CPS, DT, etc. [37]. Advance in the fields of mechanical engineering, material 
engineering, communication engineering, electronic and information engineering, computer science, control 
science and engineering, data science, etc., also supports to widen the scope of these technologies. These are 

Figure 6.　The configuration of the cloud FEA platform. Reprinted/adapted with permission from [94].



23 of 27

highly expected to boost the creation of new Industry 4.0 technologies and new emerging subjects focusing 
on the digital metal forming transformation. Meanwhile, the key Industry 4.0 technologies are creating 
exponential growth in metal forming big data, which brings boundless potentials for mining more 
comprehensive and insightful information through data processing, analysing and visualisation [100], and 
further data application on digitally enhancing and optimising the metal forming processes. As a result, more 
comprehensive online data repository can be established, more intelligent metal forming processes can be 
developed, and more tailored products are expected to be manufactured based on the big data analysis.

Despite the research and development progress, challenges also need to be addressed when promoting 
Industry 4.0 technologies. Taking I-CPS and I-IoT as examples, the main challenges of their applications can 
be summarised in the capabilities, management, engineering, ecosystems, infrastructures and information 
systems [25]. The main challenge of DT includes big data processing, and the privacy and security issues 
[101]. As for CC, the main challenge of CC includes security, performance, availability and low integrity 
with in-house IT resources [90].

The never-before-seen surge in the big data availability brings promising opportunities, while at the 
same time, brings tremendous challenges in data management and data processing as well [102], not to 
mention manage such a huge volume of data following the FAIR data principles. In addition, since the data 
privacy or protection policies are regarded as the top priority in manufacturing sector [72], the collaborations, 
such as big data sharing and exchange within I-CPS or I-IoT systems, among different factories or institutions 
can be hindered. To process these metal forming big data, the AI methods, especially the ML algorithms, are 
widely used nowadays. However, big challenges of achieving generalised prediction and high interpretability, 
and applying appropriate data pre-processing methods before using the ML algorithms still remain. 
Moreover, due to the restrictions on the data collection methods and data privacy in automotive industry, 
most of the collected metal forming data would lack critical information of the formed products and metal 
forming process itself. This leads to unstable and inaccurate predictions while applying the ML algorithms 
since the available training data is insufficient.

In terms of automotive industry, the Industry 4.0 technologies can improve the metal forming processes 
on almost all the stages including the supply and purchasing chains, raw material and tool manufacture, 
forming operations, energy consumption, quality control and customer services. The cost during the entire 
metal forming operation cycle can be reduced, and the efficiency can be increased. However, the lack of 
expertise, familiarity and culture of using Industry 4.0 technologies in some traditional automotive industries 
is a long-standing challenge [24], such as lacking the training of managing, processing or analysing the metal 
forming big data. To improve this, guidance of applying the key Industry 4.0 technologies in world leading 
automotive institutions and industries, as well as policy makers is encouraged to show the advances of digital 
manufacturing.
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