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Abstract: Alzheimer’s Disease (AD) is a neurodegenerative disorder, which is 
irreversible and incurable. Early diagnosis plays a significant role in controlling the 
progression of AD and improving the patient’s quality of life. Computer-aided 
diagnosis (CAD) methods have shown great potential to assist doctors in analyzing 
medical data, such as magnetic resonance images, positron emission tomography, 
and mini-mental state examination. Contributed by the advanced deep learning 
models, predictions of CAD methods for AD are becoming more and more accurate, 
which can provide a reference and verification for manual screening. In this paper, 
a short survey on the application of recent CAD methods in AD detection is 
presented. The advantages and drawbacks of these methods are discussed in detail, 
especially the methods based on convolutional neural networks, and the future 
research directions are summarized subsequently. With this survey, we hope to 
promote the development of CAD for early detection of AD.  

 Keywords: Alzheimer’s disease; computer-aided diagnosis; magnetic resonance 
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1. Introduction 

Alzheimer’s Disease (AD) is a progressive disorder of the neural system in humans, which accounts for about 
80% of all dementia [1]. The main symptoms of AD are gradual memory decline, regression of cognitive function, 
language disorders, and changes in emotional personality [2]. The severity of these symptoms gradually intensifies 
as the disease progresses, and patients in the late stages of AD may even completely lose their self-care ability, 
fail to recognize family members, and ultimately die. 

Currently, the exact cause of AD has not been elucidated, but studies suggest that various factors may be 
associated with the disease, such as genetic factors, abnormal protein deposition, and neurotransmitter imbalances. 
According to the progression of AD, it can be divided into three stages: mild, moderate, and severe, with a time-
span of up to 10 years or more. Although current treatments cannot completely cure AD, early diagnosis is of great 
significance for delaying the progression of the disease and improving the quality of life of patients [3,4]. 

The diagnosis of AD primarily relies on neuropsychological assessments, blood tests, spinal fluid tests, and 
imaging examinations. Among these, Magnetic Resonance Imaging (MRI) is the most commonly used method for 
brain imaging in clinical settings. MRI images can be used to observe structural changes in the patient’s brain and 
detect changes in brain volume in AD patients, such as atrophy of the hippocampus and temporal lobe cortex, 
ventricular enlargement, and white matter microlesions. However, manually analyzing high-dimensional brain 
MRI images is not only time-consuming but also requires specialized knowledge and extensive experience [5,6]. 
Moreover, manual analysis is highly subjective, and different doctors may provide different diagnostic results for 
the same set of images, leading to inconsistencies in the results. 
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Computer-aided diagnosis (CAD) is a method that uses computer algorithms and technology to assist doctors 
in disease diagnosis. With the development of artificial intelligence and particularly significant progress in 
computer vision and deep learning over the past decade, CAD applications in the medical field have become 
increasingly widespread and play an important role in the diagnosis of AD [7]. CAD leverages large amounts of 
case data and deep learning models to automatically analyze and judge the brain MRI images of suspected patients, 
for example, quantitatively analyzing the degree of atrophy in the hippocampus and brain volume on MRI [8]. 
This helps doctors make more accurate, reliable, and consistent diagnoses, reduces subjectivity, and improves the 
sensitivity and specificity of diagnosis. 

The remainder of this review is organized as follows. Information for famous public AD datasets is discussed 
in section 2. Section 3 presents a comprehensive review of existing CAD methods for AD detection, including 
models by transfer learning, models trained from scratch, unsupervised models, and other related models. In 
section 4, the conclusions are summarized, and future research directions are given. 

2. Public Datasets for AD 

Public AD datasets are vital to train and validate deep models for early AD detection. In this section, three 
well-known datasets are discussed, including Alzheimer’s Disease Neuroimaging Initiative, Open Access Series 
of Imaging Studies, and Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing. 
 Alzheimer’s Disease Neuroimaging Initiative (ADNI): This initiative offers a comprehensive dataset 

comprising MRI and PET images, genetic data, and various biomarkers for AD. The dataset is designed to 
help researchers develop and validate advanced diagnostic tools and methodologies. Access is granted upon 
application approval through the ADNI website. 

 Open Access Series of Imaging Studies (OASIS): Focused on both normal aging and clinical populations, 
OASIS datasets include longitudinal MRI data across a broad age range. These datasets are freely available 
to the scientific community and can be accessed online without extensive application procedures. 

 Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL): This study provides data 
on imaging, lifestyle, biomarkers, and the progression of AD, as well as healthy controls. Access to the data 
requires registration and approval. 

2. CAD Methods for AD Classification 

Generally, CAD methods for AD classification are based on either supervised learning or unsupervised 
learning. For supervised learning, the data samples are annotated and labeled, so the training is aimed at 
minimizing the error between the predictions of the deep model and the ground truth labels. On the other side, for 
unsupervised learning, ground truth labels are not available, so deep models are trained with proxy tasks, such as 
reconstruction, colorization, and contrastive learning. In this section, we will discuss these methods in detail. 

2.1. CAD Methods for AD Using Transfer Learning 

Transfer learning is the most popular approach for applying deep models in downstream tasks. With pre-
trained weights, deep models can converge faster on medical datasets. Raza, et al. [9] leveraged the AlexNet to 
detect AD from normal control (NC). They used the ADNI and OASIS for training and testing. The accuracies 
were 98.74% and 95.93% for ADNI and OASIS, respectively. Puente-Castro, et al. [10] used a pre-trained ResNet 
as the backbone for representation learning. The representations were combined with the age and sex information 
of the subjects. Finally, an SVM was trained for multi-class classification. The accuracies were 86.81% and 78.64% 
for OASIS and ADNI, respectively. Ashraf, et al. [11] employed 13 different CNN models for AD detection using 
transfer learning, including AlexNet, DenseNet, ResNet, VGG, and SqueezeNet. They found that DenseNet 
outperformed other models with an accuracy of 99.05% on the MRIs from ADNI. Cilia, et al. [3] leveraged the 
handwriting data of the subjects to classify AD. They employed four models for feature learning, including 
ResNet-50, VGG-19, InceptionV3, and InceptionResNetV2. Data augmentation techniques were used to generate 
synthetic handwriting images for training. The deep features were combined with handcrafted features to train four 
traditional classifiers, including SVM, random forest, multi-layer perceptron, and k nearest neighbors. The best 
accuracy was 81.03%. Helaly, et al. [8] used a pre-trained VGG-19 as the backbone for AD classification. The 
pre-trained VGG-19 was fine-tuned on the 2D brain MRIs and achieved an accuracy of 97%. Loddo, et al. [12] 
utilized three pre-trained CNNs for AD detection in brain MRIs, including ResNet-101, AlexNet, and 
InceptionResNetV2. The three pre-trained models were fine-tuned on the MRIs, and their predictions were 
obtained by averaging across the three models. Their method was experimented on three datasets: OASIS, ADNI, 
and the Kaggle dataset, yielding an accuracy of over 98% for binary classification and multi-class classification. 
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A summary of the abovementioned methods is given in Table 1.  

Table 1. CAD methods for AD classification using transfer learning. 

Author Model Dataset Result 

Raza, et al. [9] AlexNet MRIs from ADNI and 
OASIS 

The accuracies were 
98.74% and 95.93% for 

ADNI and OASIS, 
respectively. 

Puente-Castro, et al. [10] ResNet and SVM MRIs from ADNI and 
OASIS 

The accuracies were 
86.81% and 78.64% for 

OASIS and ADNI, 
respectively. 

Ashraf, et al. [11] 
AlexNet, DenseNet, 
ResNet, VGG, and 

SqueezeNet 
MRIs from ADNI 

The best accuracy was 
99.05% by transferring 

DenseNet. 

Cilia, et al. [3] 

ResNet-50, VGG-19, 
InceptionV3, 

InceptionResNetV2, SVM, 
random forest, multi-layer 
perceptron, and k nearest 

neighbors 

Private handwriting images The best accuracy was 
81.03%. 

Helaly, et al. [8] VGG-19 MRIs from ADNI The model achieved an 
accuracy of 97%. 

Loddo, et al. [12] ResNet-101, AlexNet, and 
InceptionResNetV2 

MRIs from OASIS, ADNI, 
and the Kaggle dataset 

Their method yielded an 
accuracy of over 98% for 
binary classification and 
multi-class classification. 

Note: CAD: Computer-Aided Diagnosis; AD: Alzheimer’s Disease; MRI: Magnetic Resonance Imaging; ADNI: Alzheimer’s 
Disease Neuroimaging Initiative; OASIS: Open Access Series of Imaging Studies. 

2.2. CAD Methods for AD Trained from Scratch 

Medical images vary significantly from natural images, so pre-trained weights cannot always work because 
of this gap between the source domain and the target domain. In addition, if the structure of the backbone model 
is modified or a new deep model is constructed, there are no pre-trained weights available. Therefore, training 
from scratch is preferred, which allows high flexibility in architecture design and customization for AD 
classification. Islam and Zhang [13] developed a CNN based on Inception-V4 for AD classification. The 
configurations of the original Inception-V4 were modified to fit the resolution of the MRI slices. In experiments, 
the Open Access Series of Imaging Studies (OASIS) dataset was employed for evaluation. Their model achieved 
an accuracy of 73.75%, which was not satisfactory. Bi, et al. [14] employed a CNN and a recurrent neural network 
(RNN) for feature extraction from the brain network generated from MRIs. An extreme learning machine (ELM) 
was trained to identify AD from mild cognitive impairment (MCI). They leveraged the brain MRIs from the AD 
neuroimaging initiative (ADNI) for evaluation. Traditional handcrafted features with the SVM classifier were 
implemented for comparison. The area under the curve (AUC) was chosen as the performance metric, and the best 
value was 84.7% for the classification of AD, MCI, and normal control (NC). Feng, et al. [15] designed a 3D-
CNN to generate latent features from brain MRIs and PETs and developed a bi-directional long short-term memory 
(LSTM) structure for AD classification. Their model achieved an accuracy of 94.82% in recognizing AD versus 
NC. Hussain, et al. [16] suggested building a 12-layer CNN to classify AD in brain MRIs. In their experiments, 
pre-trained CNNs were leveraged using transfer learning for comparison, including MobilenetV2, VGG, 
InceptionV3, and Xception. Their 12-layer CNN outperformed the four models. Wang, et al. [4] used functional 
MRI time series data to detect AD. A CNN was trained to generate spatial representations, and an LSTM was 
implemented to get temporal information. Their model was evaluated on the ADNI dataset, and the accuracy was 
71.76% for the classification of AD, MCI, and NC. Kundaram and Pathak [17] designed a deep CNN using 3 
convolutional layers, 3 max-pooling layers, and 2 fully-connected layers. The network was trained on the brain 
MRIs and produced an accuracy of 87.72% for validation. Zhu, et al. [18] designed a Patch-Net to generate local 
representations from the brain MRIs. Then, an attention-based pooling block was developed for feature fusion. 
Fully-connected layers served for final predictions. The model was experimented on ADNI and AIBL datasets, 
and the best accuracy was 92.4% in distinguishing AD and NC. Alorf and Khan [19] developed two different 
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networks for AD classification using brain MRIs from the ADNI dataset. The first model was a stacked sparse 
autoencoder with softmax activation for classification. The second one was built upon a graph neural network, 
which exploits the connectivity of different brain regions. Their models were evaluated using the ADNI dataset, 
and the graph network outperformed with an accuracy of 84.03%. El-Sappagh, et al. [20] employed brain MRIs 
and time series data to detect AD and MCI and predict the conversion time. An LSTM and a feedforward neural 
network were combined and trained for classification and prediction. Results from the ADNI dataset revealed that 
their model produced an accuracy of 93.87%. Houria, et al. [21] used MRIs and diffusion tensor images (DTIs) to 
detect AD and MCI. They first developed a 2D-CNN structure to generate features from different images, and 
fused them. An SVM was trained as the classification model. The performance of the model was evaluated on the 
ADNI dataset, and satisfactory results were obtained. 

A summary of the abovementioned methods is given in Table 2. 

Table 2. CAD Methods for AD Classification Trained from Scratch. 

Author Model Dataset Result 
Islam and Zhang 

[13] 
CNN based on Inception-

V4 MRIs from OASIS The best accuracy was 73.75%. 

Bi, et al. [14] CNN, RNN, and ELM MRIs from ADNI The AUC for the 3-type classification 
was 84.7%. 

Feng, et al. [15] 3D-CNN and LSTM MRIs and PETs from 
ADNI 

For AD and NC classification, the 
accuracy was 94.82%. 

Hussain, et al. [16] 12-layer CNN MRIs from OASIS Their model achieved an accuracy of 
97.75% for binary classification. 

Wang, et al. [4] CNN and LSTM MRIs from ADNI The accuracy was 71.76% for the 
classification of AD, MCI, and NC. 

Kundaram and 
Pathak [17] CNN MRIs from ADNI The model produced an accuracy of 

87.72% for validation. 

Zhu, et al. [18] CNN with an attention 
mechanism 

MRIs from ADNI and 
AIBL 

The best accuracy was 92.4% in 
distinguishing AD and NC. 

Alorf and Khan [19] Stacked sparse autoencoder 
and graph neural network MRIs from ADNI The graph network achieved an 

accuracy of 84.03%. 
El-Sappagh, et al. 

[20] 
LSTM and feedforward 

neural network 
MRIs and time series 

data from ADNI 
Their model produced an accuracy of 

93.87%. 

Houria, et al. [21] 2D-CNN and SVM MRIs from ADNI The accuracy for CN and MCI 
classification was 97.00%. 

2.3. CAD Methods for AD Using Unsupervised Learning 

Unsupervised learning can learn patterns from data without label information, which is often used in medical 
applications because it is difficult to get labels without expertise. Ju, et al. [22] generated brain networks from the 
MRIs in the ADNI dataset and constructed an autoencoder for representation learning. The pre-training of the 
autoencoder was based on unsupervised learning, and the labels were used with a softmax output layer during fine-
tuning. The autoencoder yielded an accuracy of 86.47% on the correlation coefficient data. Bi, et al. [23] utilized 
a PCANet to generate representations from the brain MRIs and used the k-means algorithm for classification. In 
the PCANet, convolutional layers and PCA operations were constructed. Therefore, the entire model can be trained 
by unsupervised learning. The average accuracy was 92.5% on the MRIs from the ADNI dataset. Jin, et al. [24] 
used a variational autoencoder as the encoder of the generative adversarial network for data augmentation. The 
reconstructed brain MRI and the original one were used to generate the residual image, which was fed into a multi-
layer perceptron for AD classification. Cabreza, et al. [25] developed a generative adversarial network for detecting 
AD in brain MRIs. Their model was trained by unsupervised learning, and an anomaly score was proposed to 
classify the AD and NC samples. MRIs from OASIS were used for training and testing, and the accuracy of their 
method was 74.44%. Shi, et al. [26] proposed a generative adversarial network for segmentation of regions of 
interest for tau decomposition and AD classification in tau PET images. In the training of the model, multiple 
losses were used to achieve better generalization performance. The final AUC for binary classification was 92.9%. 
Zhang, et al. [27] developed a generative adversarial network with pyramid attention blocks to obtain more training 
PETs. The metabolic features in PETs were combined with MRIs for classifier training. For AD, MCI, and NC 
classification, the accuracy was 89.9%. 

A summary of the abovementioned methods is given in Table 3. 
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Table 3. CAD methods for AD using unsupervised learning. 

Author Model Dataset Result 

Ju, et al. [22] Autoencoder MRIs from ADNI 
Based on the correlation 

coefficient data, the accuracy was 
86.47%. 

Bi, et al. [23] PCANet and k-means MRIs from ADNI The average accuracy was 92.5%. 

Jin, et al. [24] 
Variational autoencoder, 

generative adversarial network, 
and multi-layer perceptron 

MRIs from ADNI The accuracy was 94%. 

Cabreza, et al. [25] Generative adversarial network MRIs from OASIS The overall accuracy was only 
74.44%. 

Shi, et al. [26] Generative adversarial network 
with multiple losses Tau PETs from ADNI The final AUC for binary 

classification was 92.9%. 

Zhang, et al. [27] Generative adversarial network 
with pyramid attention blocks 

MRIs and PETs from 
ADNI 

For AD, MCI, and NC 
classification, the accuracy was 

89.9%. 

2.4. Other CAD Methods for AD 

There are some AD detection methods based on traditional machine learning algorithms and networks other 
than CNNs or recurrent neural networks. For instance, Almubark, et al. [28] employed principal component 
analysis (PCA) with machine learning classifiers to detect AD from neuropsychological and cognitive data, 
including SVM, random forest, gradient boosting, and AdaBoost models. Uysal and Ozturk [29] attempted to 
diagnose AD based on hippocampal atrophy conditions. They segmented the brain MRIs to obtain the volume 
information of the hippocampal, which was fused with age and gender information. The SVM, Logistic regression, 
Gaussian naïve Bayes classifier, decision tree, random forest, and k-nearest neighbors were trained for 
identification of AD. The highest accuracy was 98% for AD and NC classification. Alvi, et al. [2] employed a 
gated-recurrent unit, a variant of the recurrent neural network to detect MCI using electroencephalography data. 
The electroencephalography data were pre-processed and segmented before feature extraction. Subsequently, a 
gated-recurrent unit was trained to identify MCI and NC. The experiment results showed that their method 
achieved an accuracy of 96.91%. Ilias and Askounis [30] proposed that transformer-based language models can 
be employed to detect AD in transcript data. The results were obtained on the ADReSS challenge dataset, and the 
model achieved an accuracy of 86.25% for multi-class classification. Meanwhile, they also analyzed the transcript 
and found out the words related to AD. Khan and Zubair [31] tried to detect AD using cognitive and demographic 
data from the ADNI dataset. Six different traditional machine learning classifiers were trained and compared in 
their experiments, and the best accuracy was 93.90%.  

A summary of the abovementioned methods is given in Table 4. 

Table 4. Other CAD methods for AD. 

Author Model Dataset Result 

Almubark, et al. [28] 
PCA with SVM, random 

forest, gradient boosting, and 
AdaBoost 

Neuropsychological and 
cognitive data 

The best accuracy was 
91.08%. 

Uysal and Ozturk [29] 

SVM, Logistic regression, 
Gaussian naïve Bayes 

classifier, decision tree, 
random forest, and k nearest 

neighbors 

MRIs from ADNI 
The highest accuracy was 

98% for AD and NC 
classification. 

Alvi, et al. [2] Gated-recurrent unit Private 
electroencephalography data 

The experiment results 
showed that their method 
achieved an accuracy of 

96.91%. 

Ilias and Askounis [30] Transformer ADReSS challenge dataset 
The model achieved an 
accuracy of 86.25% for 

multi-class classification. 

Khan and Zubair [31] 

SVM, extreme Gradient 
Boosting, Logistic regression, 

naïve Bayes classifier, decision 
tree, and random forest 

Cognitive and demographic 
data from ADNI dataset 

The best accuracy was 
93.90%. 
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3. Conclusion 

This paper presents a comprehensive survey of CAD methods for AD detection. The review highlights the 
critical role of early diagnosis in managing AD progression and improving patient quality of life. In recent years, 
CAD methods utilizing advanced deep learning models have shown promising results in analyzing medical data 
such as MRI, PET, and cognitive assessments to aid in accurate diagnosis. 

The CAD methods can be categorized into supervised learning, unsupervised learning, and other techniques. 
This study describes the application of pre-trained deep models like AlexNet, ResNet, and VGG in transfer learning, 
the development of custom CNN and RNN architectures for training from scratch. Unsupervised learning 
approaches, including autoencoders, generative adversarial networks, and PCA networks, are also explored for AD 
detection. Additionally, the use of traditional machine learning, transformer models, and other networks beyond 
CNNs in AD classification is discussed. The comparison of the three main methods is presented in Table 5. 

Table 5. Comparison of three main methods. 
Method Advantages Limitations 

Transfer Learning 

- Requires less training data 
- Faster convergence 
- Leverages pre-trained models to enhance feature
extraction 

- Potential for overfitting on small datasets
- Dependent on the relevance of pre-
trained model 

Training from Scratch- Customized to specific tasks 
- Full control over architecture 

- Requires large datasets 
- Long training times 

Unsupervised 
Learning 

- No need for labeled data 
- Can discover unexpected patterns 

- Less accurate than supervised methods 
- Complex interpretation of results 

Despite the advancements in CAD methods, several challenges remain, including the need for larger and 
more diverse datasets, the incorporation of multimodal data, and improvements in model generalization. Future 
research directions should emphasize the importance of continued research to develop more accurate and robust 
CAD systems, leveraging advanced deep learning techniques and integrating multimodal data, to assist doctors in 
the early detection and diagnosis of AD. The application of CAD methods in clinical practice is yet to be achieved 
currently. This is because the CAD systems need to be subjected to rigorous regulatory approval processes, which 
can be lengthy and costly, especially for tools that use machine learning. Issues such as patient data privacy, consent 
for using patient data in training models, and the potential for bias in algorithmic decisions must be carefully 
managed. Moreover, clinicians may be skeptical of CAD systems, especially if they do not understand how 
decisions are made by the algorithms. 
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